

DS maakt ontwikkelen mogelijk

A. Einsteinweg 29 te Alphen aan den Rijn

Beknopt vooronderzoek Verkennend actualiserend milieukundig bodemonderzoek Verkennend asbest bodemonderzoek

Kenmerk A5001-06/KHA/rap1 Datum 19 april 2024

Opdrachtgever Goedhart Bouwmarkt Alphen aan den Rijn BV

Hoorn 126 A

2404 HJ Alphen aan den Rijn

Goedkeuring	Functie	Datum	Handtekening
(Adviseur milieu)	Opsteller, auteur	19-04-2024	
(Projectleider)	2º lezerschap	19-04-2024	
(Teamleider)	Vrijgave	19-04-2024	

BRL SIKB 2000 protocol 2001, 2002, 2018

INHOUDSOPGAVE

1. I	NLEIDING	4
2. E	BEKNOPT VOORONDERZOEK	6
2.1	GEGEVENS ONDERZOEKSGEBIED	6
2.2	RESULTATEN VOORGAANDE ONDERZOEKEN	7
2.3	TERREINVERKENNING	g
2.4		
3. \	VERKENNEND BODEMONDERZOEK	10
3.1	UITVOERING VELDONDERZOEK	11
3.2		
3.3	TOETSINGSKADER	13
3.4		
3.5	TOETSING HYPOTHESE	16
4. \	VERKENNEND ONDERZOEK ASBEST	17
4.1	ONDERZOEKSSTRATEGIE	17
4.2		
4.3	VISUELE INSPECTIE GROND	18
4.4	UITVOERING LABORATORIUMONDERZOEK	19
4.5		
5. (CONCLUSIES EN AANBEVELINGEN	21
5.1	CONCLUSIES	21
5.2	AANBEVELINGEN	21
6. E	BETROUWBAARHEID	23

BIJLAGEN

1.	Kaarten en tekeningen
1.1	Topografische kaart
1.2	Situatietekening
2.	Vooronderzoek
2.1	Rapportage Omgevingsdienst Midden-Holland
2.2	Fotoreportage
3.	Veldonderzoek
3.1	Formulieren veldonderzoek
3.2	Boorstaten en legenda
4. 4.1 4.2 4.3	Laboratoriumonderzoek Certificaten grond Certificaten grondwater Certificaat asbest grond
5. 5.1 5.2 5.3	Toetsingstabellen Toetsingstabellen grond Toetsingstabellen grondwater Toetsing PFAS grond

1. INLEIDING

In opdracht van Goedhart Bouwmarkt Alphen aan den Rijn BV is door IDDS een beknopt vooronderzoek en een verkennend actualiserend milieukundig bodem- en asbestonderzoek uitgevoerd. De onderzoekslocatie is gelegen aan de A. Einsteinweg te Alphen aan den Rijn (afbeelding 1).

Afbeelding 1: Onderzoeksgebied (bron: OpenTopo)

Aanleiding en doelstelling

Het onderzoek is uitgevoerd in verband met de voorgenomen aankoop en potentiële herontwikkeling van het terrein. Hierbij wordt een bouwmarkt gebouwd zonder kelder.

De doelstelling van het onderzoek is om te bepalen of er in de grond en/of het grondwater ter plaatse van de onderzoekslocatie sprake is van een (sterke) verontreiniging.

Verklaring onafhankelijkheid

IDDS verklaart hierbij onafhankelijk te zijn van de opdrachtgever en geen belang te hebben bij de resultaten van het uitgevoerde onderzoek.

Beknopt vooronderzoek

Er is ter plaatse van de onderzoekslocatie reeds een milieuhygiënisch vooronderzoek (historisch vooronderzoek) conform de NEN 5725 uitgevoerd door Antea Group (0432255.00, revisie 01, d.d. 19 maart 2018). Voor zover bekend hebben zich sinds dit onderzoek geen wijzigingen voorgedaan met betrekking tot het gebruik van de locatie en is de bodemkwaliteit, naar verwachting, niet verslechterd. Derhalve kan onzes inziens in dit onderzoek worden volstaan met een beknopt vooronderzoek.

Verkennend bodemonderzoek

Ter bepaling van de milieuhygiënische bodemkwaliteit binnen de begrenzing van de onderzoekslocatie, is de onderzoeknorm NEN 5740:2023 gehanteerd. Deze norm beschrijft de werkwijze voor het opstellen van de onderzoeksstrategie bij een verkennend bodemonderzoek naar de (mogelijke) aanwezigheid van bodemverontreiniging en de werkwijze voor het bepalen van de milieuhygiënische kwaliteit van de bodem en eventueel vrijkomende grond.

Op basis van de informatie uit het milieuhygiënisch vooronderzoek wordt een onderzoekshypothese geformuleerd. Elke uit het milieuhygiënisch vooronderzoek resulterende onderzoekshypothese over de aan- of afwezigheid van bepaalde verontreinigende stoffen en de wijze van verspreiding wordt getoetst met een locatiespecifieke onderzoeksstrategie.

Verkennend asbestonderzoek

Ter bepaling van de milieuhygiënische bodemkwaliteit binnen de begrenzing van de onderzoekslocatie ten aanzien van asbest, is de onderzoeksnorm NEN 5707+C2;2017 gehanteerd. Deze norm beschrijft de werkwijze voor het opstellen van de onderzoeksstrategie bij verkennend en nader onderzoek en de inspectie en monsterneming voor de bepaling van asbest in bodem en partijen grond.

Leeswijzer

In hoofdstuk 2 wordt een beknopt vooronderzoek uitgevoerd. In hoofdstuk 3 wordt het verkennend bodemonderzoek stapsgewijs besproken. De resultaten van het verkennend asbestonderzoek worden besproken in hoofdstuk 4. In hoofdstuk 5 zijn de conclusies en aanbevelingen opgenomen. Tenslotte wordt in hoofdstuk 6 de betrouwbaarheid van het onderzoek toegelicht.

2. BEKNOPT VOORONDERZOEK

2.1 GEGEVENS ONDERZOEKSGEBIED

ABEL 2.1.1: Gegev Onderzoeksgebie					
Wat is de afbakenir	ng van de onderzo	ekslocatie en is deze voldoende?			
Uitwerking			Bronnen		
Situering	Begrenzing onde	zie overzichtskaart 1.1 in bijlage 1. erzoekslocatie: zie situatietekening 1.2 in bijlage 1.	#1 / #2 / #3		
Adres	Albert Einsteinwe	eg 29			
Postcode / Plaats	2408 AP Alphen	aan den Rijn			
Gemeente	Alphen aan den	Rijn			
Omgevingsdienst	Omgevingsdiens	t Midden-Holland			
Provincie	Zuid-Holland				
RD-coördinaten	Omschrijving	Globaal middelpunt onderzoekslocatie			
	X	103.841			
	Υ	460.188	7		
Specifieke gebieden	Provincie	De locatie is op basis van de Omgevingsverordening niet gelegen binnen een grondwaterbeschermingsgebied.			
	Waterschap	De locatie is, op basis van de Legger waterkeringen, niet gelegen binnen de kern- of beschermingszone van een dijk of waterkering.			
Hoogte maaiveld	Z	Circa 1,2 m -NAP			
Kadastraal	Gemeente	Alphen aan den Rijn			
	Gemeentecode	APN01			
	Sectie	Α			
	Nummer	7405 (gedeeltelijk)			
Oppervlaktes	Totaal	Ca. 8.180 m ²			
	Bebouwd	-			
	Verharding	-			
Belendingen	Alle richtingen	Rondom de locatie is sprake van bebouwing bestaande uit bedrijven en winkels. Ten noorden is de Albert Einsteinweg gelegen. Afbeelding 2: Onderzoekslocatie en belendingen (bron: IDDS Projectenkaart)			
Afbakening VO	25 meter buiten	onderzoekgrenzen	-		

Conclusie

Afbakening voldoende

#1: Perceelloep.nl / AHN.nl / WKOtool.nl

#2: Bodematlas Zuid-Holland / Legger Waterschap Rivierenland

#3: IDDS Projectenkaart

2.2 RESULTATEN VOORGAANDE ONDERZOEKEN

Ter plaatse van de onderzoekslocatie is zijn diverse bodemonderzoeken uitgevoerd, te weten:

- Verkennend bodemonderzoek A. Einsteinweg 27, Grondslag, 1746, d.d. 06 mei 1996
- Verkennend en aanvullend bodemonderzoek (incl. eindsituatie bodemonderzoek) Albert Einsteinweg 27 te Alphen aan den Rijn, IDDS, 1210E743/GGE/rap1, d.d. 20 maart 2013
- Historisch vooronderzoek A. Einsteinweg 27-29 te Alphen aan den Rijn, 0432255.00, d.d. 19 maart 2018
- Verkennend asbest- en bodemonderzoek Albert Einsteinweg 27/29 te Alphen aan den Rijn, Antea Group, 0432255.00, d.d. 4 juni 2018
- Actualiserend onderzoek PFAS Albert Einsteinweg 27 en 19 Alphen aan den Rijn, Antea Group, 0459241.100, d.d. 17 januari 2020

Voor onderhavig (vervolg)onderzoek wordt derhalve volstaan met een samenvatting van de voor de onderzoeken relevante gegevens uit bovenstaande voorgaande onderzoeken waarbij de meest recente informatie als leidend wordt beschouwd:

- De voorgaande bebouwing dateert uit het kalenderjaar 1984. In het verleden kende de locatie een agrarische bestemming. Bij het bouwrijp maken van de locatie zijn een watergang en enkele sloten gedempt. Het is onbekend met welk soort dempingsmateriaal de watergang is gedempt. Vanaf medio 1996 was de onderzoekslocatie in gebruik als sociale werkplaats. De voormalige bebouwing is omstreeks 2016 / 2017 gesloopt. Sindsdien ligt het terrein braak.
- Bij de beëindiging van de werkzaamheden is door IDDS een verkennend en aanvullend bodemonderzoek uitgevoerd (kenmerk 1210E743/GGE/rap1, d.d. 20-03-2013). Het onderzoek diende tevens als eindsituatie bodemonderzoek. Uit de analyseresultaten blijkt dat de bovengrond licht verontreinigd was met lood en PCB. De ondergrond was licht verontreinigd met cadmium, koper, kwik, molybdeen, zink en minerale olie. Zeer plaatselijk is de ondergrond matig verontreinigd met lood. Het grondwater is licht verontreinigd met barium, cis-1,2-dichlooretheen, vinylchloride en xylenen.
- Uit het meest recente bodemonderzoek uit 2018 blijkt dat in de bovengrond zwakke tot matige bijmengingen met puin aanwezig waren. De bovengrond was hooguit licht verontreinigd met enkele zware metalen en PAK. De ondergrond was niet verontreinigd met de onderzochte parameters. Ter plaatse van de slootdempingen was geen afwijkende bodemopbouw of dempingsmateriaal waargenomen. De verwachting was dat de bodemkwaliteit hetzelfde was als de rest van de locatie;
- Zowel zintuiglijk als analytisch was geen asbest aangetoond;
- Het grondwater was matig verontreinigd met barium. Aangezien in het vooronderzoek geen aanwijsbare reden naar voren was gekomen voor deze verhoging met barium werd uitgegaan van een van nature verhoogd gehalte. Vervolgonderzoek was daarom niet noodzakelijk.

Vooralsnog zijn de aangetoonde matige verontreinigingen met lood in het voorgaand onderzoek niet aangetoond. Om te verifiëren dat de hooguit lichte verontreinigingen uit het meest recente bodemonderzoek uit 2018 gelden, dient onzes inziens nog een geactualiseerd bodemonderzoek uit te worden gevoerd. Tevens wordt tegelijkertijd een asbestonderzoek uitgevoerd. Daarnaast wordt ter plaatse van de gedempte sloten geverifieerd dat er daadwerkelijk geen sprake is van een afwijkende bodemopbouw of dempingsmateriaal en deze zoals wordt gehypothetiseerd gedempt zijn met gebiedseigen grond.

2.3 BEOORDELING BODEM 2018-2024

Om te bepalen of er tussen 2018 tot heden niet alsnog verontreinigende activiteiten hebben plaatsgevonden welke hebben bijgedragen aan de verslechtering van de milieuhygiënische kwaliteit van de bodem zijn de luchtfoto's van elk jaar vanaf 2018 tot heden bestudeerd. Hieronder zijn de bestudeerde luchtfoto's weergegeven:

Afbeelding 3: Onderzoeksgebied in '2018' (bron: TopoTijdReisLufo). Hierop is te zien dat het terrein braak ligt.

Afbeelding 4: Onderzoeksgebied in '2019' (bron: TopoTijdReisLufo). Hierop is te zien dat het terrein nog steeds braak ligt.

Afbeelding 5: Onderzoeksgebied in '2020' (bron: TopoTijdReisLufo). Hierop is te zien dat het terrein grotendeels braak ligt, afgezien van een bomenrij.

Afbeelding 6: Onderzoeksgebied in '2021' (bron: TopoTijdReisLufo). Hierop is te zien dat het terrein braak ligt, maar meer begroeid is met gras.

Afbeelding 7: Onderzoeksgebied in '2022' (bron: TopoTijdReisLufo). Hierop is te zien dat het terrein braak ligt.

Afbeelding 8: Onderzoeksgebied in '2023/2024' (bron: TopoTijdReisLufo). Hierop is te zien dat het terrein grotendeels braak ligt. Enkel in het westen wordt het terrein gebruik als opslag.

Aan de hand deze luchtfoto's kan geconcludeerd worden dat de locatie sinds 2018 (grotendeels) braakliggend heeft gelegen en op locatie geen (potentieel) bodembedreigende activiteiten hebben plaatsgevonden die de bodemkwaliteit na 2018 hebben verslechterd.

2.4 TERREINVERKENNING

De terreinverkenning heeft tot doel om te controleren of de gedocumenteerde informatie overeenkomt met de daadwerkelijke situatie ter plaatse en deze aan te vullen met relevante waarnemingen.

De terreinverkenning is op 21 maart 2024 uitgevoerd. Op basis van de terreinverkenning blijkt dat het terrein momenteel volledig braak ligt en grotendeels begroeid (met gras) is. Er vindt op dit moment geen opslag meer plaats op het westelijk deel van het terrein. Op het maaiveld zijn plaatselijk bijmengingen met puin en baksteen waargenomen.

Er is geen van aanvullende bijzonderheden en er hebben zich geen wijzigingen voorgedaan ten opzichte van de reeds verkregen gegevens.

Ter illustratie is in bijlage 2 een fotoreportage opgenomen.

2.5 CONCLUSIES EN HYPOTHESESTELLING

Op basis van de resultaten van het beknopte vooronderzoek zijn conclusies getrokken over de verwachting van de milieuhygiënische bodemkwaliteit en de aanwezige verontreinigende stoffen.

Op basis van de getrokken conclusie is een hypothese geformuleerd. De hypothese betreft voor elke (deel)locatie, in zowel het horizontale als het verticale vlak, de verwachting met betrekking tot de aanwezigheid van bodemverontreiniging. Bij eventueel bodemonderzoek dient de hypothesestelling als basis voor de onderzoeksstrategieën uit de desbetreffende normdocumenten. De hypothese en strategie zijn complementair aan elkaar.

TABEL 2.4.1: Conclusie en hypothese

Hypothese	
Algemeen	
Locatie	Gehele terrein/onderzoekslocatie
Conclusie	Er is reeds ter plaatse van de onderzoekslocatie een milieuhygiënisch vooronderzoek evenals een verkennend asbest- en bodemonderzoek uitgevoerd. Over het algemeen worden in het grond en het grondwater geen noemenswaardige verontreinigingen verwacht.
Hypothese	Onverdacht Als aandacht parameter wordt aangemerkt: Grond: zware metalen, PAK en asbest
Norm	NEN 5740:2023
Onderzoeksstrategie	Onderzoeksstrategie voor een onverdachte niet-lijnvormige locatie (ONV-NL)
Opmerking	Op voorhand wordt ervan uitgegaan dat in de grond sprake is van puinbijmengingen. Derhalve wordt tegelijkertijd een verkennend asbestonderzoek uitgevoerd.
Norm	NEN 5707
Onderzoeksstrategie	Onderzoeksstrategie voor een diffuus belaste locatie met een heterogeen verdeelde asbestverontreiniging op schaal van monsterneming

3. VERKENNEND BODEMONDERZOEK

3.1 UITVOERING VELDONDERZOEK

Een samenvatting van de tijdens het veldonderzoek uitgevoerde werkzaamheden is opgenomen in de navolgende tabel. De posities van de genoemde meetpunten zijn weergegeven op situatietekening 1.2 die in bijlage 1 is opgenomen.

TABEL 3.1.1: Samenvatting veldonderzoek

Uitvoeringsperiode	25-03-2024 en 02-04-2024 (2001) 02-04-2024 09-04-2024 (2002)							
Uitvoerende partij	IDDS Milie	eu						
BRL SIKB / protocol		BRL SIKB 2000 Protocol 2001, 2002						
Onderzoekaspect	Meetpunt	Meetpunten Codering Bijzonderheden						
	Туре	Diepte [m-mv]	Aantal					
Gehele terrein	Boring 0,5-0,7 13		13	01, 02, 04, 06, 08, 09, 10, 12, 13, 15, 16, 17, 19	*			
		2,0 4 03, 05, 11, 14						
	Peilbuis	3,0	2	07, 18, 18a				

^{*}peilbuis 18 is opnieuw geplaatst tijdens de grondwatermonstername van peilbuis 07, omdat de peilbuis uit de grond was gehaald. Peilbuis 18a is hiervoor in de plaats gezet en een week later bemonsterd.

Uitvoeringswijze

Tijdens het veldonderzoek is niet afgeweken van de beoordelingsrichtlijn. Het veldverslag met daarin de gegevens van het veldwerkbureau en de namen van de veldwerkers is opgenomen in bijlage 3. Het procescertificaat en het hierbij behorende keurmerk zijn van toepassing op de activiteiten met betrekking tot het veldonderzoek en de overdracht van de monsters, inclusief de daarbij behorende veldwerkregistratie aan een erkend laboratorium of aan de opdrachtgever.

Tijdens het veldonderzoek zijn specifieke voorschriften gevolgd om contaminatie met PFAS te voorkomen. Het betreft de voorschriften zoals beschreven in "Handreiking PFAS bemonsteren" (versie 25 juni 2020).

Tijdens het verrichten van het veldonderzoek is de bodem zintuiglijk beoordeeld op de mogelijke aanwezigheid van verontreinigingen en is de bodemopbouw beschreven.

Bodemopbouw

Per meetpunt is de texturele, minerale en organische samenstelling van de bodem nauwkeurig beschreven. Op basis van deze beschrijving is per meetpunt een boorstaat vervaardigd. De boorstaten zijn opgenomen in bijlage 3.

De globale opbouw van de bodem ter plaatse van de gehele onderzoekslocatie, gebaseerd op de boorstaten, wordt als volgt omschreven:

- De bovengrond bestaat geheel uit zand. De ondergrond bestaat tot de geboorde dieptes van maximaal 3,0 m-mv uit afwisselend uit zand, veen en/of klei.

Zintuiglijk waargenomen bijzonderheden

Het opgeboorde bodemmateriaal is visueel geïnspecteerd op afwijkingen en op het voorkomen van bodemvreemde bijmengingen die kunnen duiden op een mogelijke verontreiniging van de bodem. Het materiaal is met name beoordeeld op de aard, grootte en gradatie van voorkomen. Sommige verontreinigingen die in de bodem aanwezig zijn, kunnen aan de geur herkend worden. Benadrukt dient te worden dat, indien tijdens de veldwerkzaamheden passieve geurwaarnemingen worden gedaan, deze gekarakteriseerd worden en per boorpunt worden beschreven.

Indien er sprake is van afwijkingen en/of bijmengingen zijn deze, per meetpunt en per bodemlaag, aangegeven in de boorstaten die zijn opgenomen in bijlage 3. Op basis van de boorstaten blijkt in hoofdlijnen het navolgende:

- In de grond is sprake van bijmengingen met bodemvreemde materialen. Het betreft bijmengingen met baksteen, metselpuin en aardewerk (in de maten van sporen tot zwak) in de bovengrond (tot max. 0.7 m-mv):
- Ter plaatse van boring 07 (één van de gedempte sloten) is in de ondergrond sprake van sporen metselpuin, baksteen en glas evenals een zwakke bijmenging met slib. Dit duidt mogelijk op de voormalige waterbodem van de gedempte sloot.

Grondwater

Voorafgaand aan de bemonstering van het grondwater is de actuele grondwaterstand opgenomen ten opzichte van het maaiveld. Van het bemonsterde grondwater is in het veld de zuurgraad (pH), het elektrisch geleidingsvermogen (EC) en de mate van troebelheid (NTU) gemeten. Het bemonsterde grondwater is zintuiglijk beoordeeld op eventuele afwijkingen die kunnen duiden op een bodemverontreiniging.

In de navolgende tabel zijn de resultaten opgenomen van de uitgevoerde metingen en verrichtte waarnemingen.

TABEL 3.2.2: Metingen uitgevoerd aan het grondwater

Peilbuis	Filterstelling	Grondwater- stand	рН	EC	Troebel- heid	Monster- name	Zintuiglijke afwijkingen / overige bijzonderheden
	[m-mv]	[m-mv]	[-]	[µS/cm]	[NTU]	d.d.	
07-1-1	2,00 - 3,00	0,86	6,7	1622	32	02-04-2024	Geen bijzonderheden
18a-1-1	2,00 - 3,00	1,05	7,2	2366	29,7	09-04-2024	Geen bijzonderheden

Op basis van de veldwaarnemingen en metingen blijkt het navolgende:

- Aan het bemonsterde grondwater zijn geen afwijkingen waargenomen die kunnen duiden op een eventuele bodemverontreiniging.
- De gemeten waarden voor de zuurgraad en het elektrisch geleidingsvermogen duiden niet op een eventuele verontreiniging van het grondwater.
- Opgemerkt wordt dat de troebelheid verhoogd is ten opzichte van de natuurlijke troebeling die maximaal 10 NTU bedraagt. De hoge troebeling duidt op de aanwezigheid van veel onopgeloste bestanddelen (colloïden).

3.2 UITVOERING LABORATORIUMONDERZOEK

Voor de verrichting van het chemisch onderzoek zijn de monsters overgebracht naar een (RvA) geaccrediteerd en AS3000 erkend laboratorium. De naam en contactgegevens van het betreffende laboratorium, alsmede de data waarop de monstervoorbehandeling en het analytisch onderzoek is uitgevoerd, zijn aangegeven op de analysecertificaten die in bijlage 4 zijn opgenomen.

Analysestrategie

Bij de selectie van de grond(meng)monsters is, voor het verkrijgen van een representatief beeld van de milieuhygiënische kwaliteit van de bodem, rekening gehouden met de bodemopbouw en eventuele zintuiglijk waargenomen afwijkingen. Voor het verkrijgen van een ruimtedekkend beeld is eveneens rekening gehouden met de situering van de boringen. In tabel 3.3.1 is een overzicht gegeven van de monsters, waar van toepassing de monstersamenstelling, de monstertrajecten en de uitgevoerde analyses.

Samenstelling analysepakketten

In het standaardpakket voor grond zijn de volgende analyses opgenomen:

- Zware metalen (barium, cadmium, kobalt, koper, kwik, lood, molybdeen, nikkel en zink).
- PAK (polycyclische aromatische koolwaterstoffen).
- Minerale olie (GC).
- PCB (PolyChloorBifenylen).

Ten behoeve van de toetsing van de analyseresultaten zijn van alle grondmonsters de percentages lutum en/of organische stof bepaald.

Aanvullend is de bovengrond op PFAS geanalyseerd.

In het standaardpakket voor grondwater zijn de volgende analyses opgenomen:

- Zware metalen (barium, cadmium, kobalt, koper, kwik, lood, molybdeen, nikkel en zink).
- BTEXNS (benzeen, tolueen, ethylbenzeen, xylenen, naftaleen en styreen).
- VOCI (vluchtige organochloorverbindingen).
- Minerale olie.

3.3 TOETSINGSKADER

De resultaten van de chemische analyses zijn weergegeven op de analysecertificaten, die in bijlage 4 zijn opgenomen. De analyseresultaten zijn, waar van toepassing, getoetst. De toetsingstabellen zijn opgenomen in bijlage 5. Opgemerkt wordt dat de toetsing niet is gevalideerd door de Rijksoverheid (BoToVa).

Grond

Voor de interpretatie van de resultaten van de chemische analyses van de grondmonsters zijn de meetwaarden, conform bijlage G van de Regeling bodemkwaliteit 2022, gecorrigeerd voor de gemeten percentages lutum en/of organische stof.

De gecorrigeerde meetwaarden zijn vergeleken met het toetsingskader van de Omgevingswet. Dit toetsingskader bestaat uit:

- de interventiewaarden, zoals opgenomen in bijlage IIA van het Besluit activiteiten leefomgeving.

Naast het wettelijk kader zijn de gecorrigeerde meetwaarden getoetst aan de index. De index is het rekenkundig gemiddelde van de Kwaliteitseis voor landbouw/natuur¹ en de interventiewaarde/waarden voor toelaatbare kwaliteit voor de betreffende stof.

Indien de gecorrigeerde meetwaarde voor één of meerdere stoffen de index overschrijdt kan in potentie sprake zijn van een overschrijding van de toelaatbare kwaliteit. Het uitvoeren van nader bodemonderzoek is dan een aantal gevallen noodzakelijk.

Grondwater

De meetwaarden zijn vergeleken met het toetsingskader van de Omgevingswet. Dit toetsingskader bestaat uit:

- signaleringsparameters, zoals opgenomen in bijlage Vd van het Besluit kwaliteit leefomgeving.

¹ Regeling bodemkwaliteit 2022, bijlage B tabel 1 Beknopt vooronderzoek en verkennend bodem- en asbestonderzoek Locatie: A. Einsteinweg 29 te Alphen aan den Rijn Kenmerk rapportage: A5001-06/KHA/rap1

Deze signaleringsparameter is gelijk aan de voormalige interventiewaarde (Wbb). Vanwege het ontbreken van de toetsing aan de signaleringsparameters in de toetsservices is gebruik gemaakt van de toetsing aan de Wbb. Hierbij is de signaleringsparameter gelijk gesteld aan de interventiewaarde en de streefwaarde aan de voorkeurswaarde². Naast het wettelijk kader zijn de gecorrigeerde meetwaarden getoetst aan de index. De index is het rekenkundig gemiddelde van de voorkeurswaarde en de signaleringswaarde voor de betreffende stof. Indien de meetwaarde voor één of meerdere stoffen de index overschrijdt kan in potentie sprake zijn van een overschrijding signaleringsparameter in het grondwater elders op de locatie. Het uitvoeren van nader bodemonderzoek is dan een aantal gevallen noodzakelijk.

In tabel 3.3.1 zijn de resultaten van het veld- en laboratoriumonderzoek opgenomen alsmede de resultaten van de uitgevoerde toetsingen.

<Index niet of licht verontreinigd: het gehalte/concentratie is lager dan of gelijk aan de index;</p>
>Index licht, maar potentieel sterk verontreinigd: het gehalte/concentratie overschrijdt de

licht, maar *potentieel sterk verontreinigd:* het gehalte/concentratie overschrijdt de Index en is lager dan of gelijk aan de interventiewaarde/signaleringsparameter:

>I/>S sterk verontreinigd: het gehalte/concentratie overschrijdt de

interventiewaarde/signaleringsparameter.

TABEL 3.3.1: Overzicht monsters, monstersamenstelling, analyses en toetsingsresultaten

Monstercodes	Deelmonsters en bodemlagen (bodemlagen in m-mv)	Matrix en eventuele bijzonderheden	Analyse	Toetsingsresulta	ten		
				> Index (niet tot licht verontreinigd)	> Index (licht verontreinigd, maar potentieel sterk verontreinigd)	> I / S (sterk verontreinigd)	
Gehele terrein							
Bovengrond							
MM01	02 (0,00 - 0,50) 03 (0,00 - 0,50) 05 (0,00 - 0,50) 06 (0,00 - 0,50) 07 (0,00 - 0,50) 08 (0,00 - 0,50)	Zand, sporen aardewerk, sporen metselpuin, sporen baksteen, zwak baksteenhoudend, sporen glas	#1 / #2	-	-	-	
MM02	09 (0,00 - 0,50) 10 (0,00 - 0,50) 12 (0,00 - 0,50) 13 (0,00 - 0,50) 14 (0,00 - 0,50) 16 (0,00 - 0,50) 18 (0,00 - 0,50)	Zand, sporen baksteen, sporen metselpuin, sporen aardewerk, zwak metselpuinhoudend	#1 / #2	Lood (0,03)	-	-	
MM03	11 (0,00 - 0,50) 17 (0,00 - 0,50)	Zand, sporen baksteen, sporen metselpuin	#1	PCB (0,01)			
Ondergrond							
M04	07 (1,30 - 1,70)	Zand, sporen glas, sporen metselpuin, sporen baksteen, zwak slibhoudend	#1		-		
MM05	03 (1,00 - 1,50) 05 (1,30 - 1,80) 07 (0,50 - 1,00) 11 (0,70 - 1,20) 14 (0,50 - 1,00) 18 (0,50 - 1,00)	Zand, geen bijzonderheden	#1	-	-	-	
MM06	03 (1,80 - 2,00) 14 (1,00 - 1,50) 18 (1,20 - 1,60)	Klei, geen bijzonderheden	#1	Nikkel (0,13)	-	-	
Grondwater							
07-1-1	07 (200-300)	Grondwater	#3	Barium (0,17)	-	-	
18a-1-1	18a (200-300)	Grondwater	#3	-	Barium (0,5)	-	

Blanco : Niet geanalyseerd / onderzocht / getoetst

#1 : Standaardpakket grond #2 : PFAS grond

#3 : Standaardpakket grondwater

2 Voorkeurswaarden, zoals opgenomen in de Omgevingsverordening van de provincie (Zuid-Holland)

Beknopt vooronderzoek en verkennend bodem- en asbestonderzoek

Locatie: A. Einsteinweg 29 te Alphen aan den Rijn

Kenmerk rapportage: A5001-06/KHA/rap1

PFAS

Voor PFAS zijn toepassingsnormen opgenomen in het "Tijdelijk handelingskader voor hergebruik van PFAS-houdende grond en baggerspecie" van 2 december 2021 (geactualiseerd). Bij een gemeten percentage organisch stof tussen 10% en 30% zijn de gemeten gehalten PFAS gecorrigeerd, waarna deze zijn vergeleken met de toetsingswaarden uit het Tijdelijk handelingskader.

TABEL 3.4.2: Overzicht monsters, monstersamenstelling, analyses en toetsingsresultaten (PFAS)

Monstercodes, Deelmonsters en bodemlagen (in cm-mv)	Matrix	Analyse	SOM PFOA [µg/kg]	SOM PFOS [µg/kg]	Toetsing
MM01 02 (0-50) 03 (0-50) 05 (0-50) 06 (0-50) 07 (0-50) 08 (0-50)	Zand	#1	1,1	0,6	Landbouw en natuur
MM02 09 (0-50) 10 (0-50) 12 (0-50) 13 (0-50) 14 (0-50) 16 (0-50) 18 (0-50)	Zand	#1	0,5	0,7	Landbouw en natuur

#1 : PFAS grond

3.4 INTERPRETATIE

Grond

De bovengrond bestaat geheel uit zand. De ondergrond bestaat tot de geboorde dieptes van maximaal 3,0 m-mv uit afwisselend uit zand, veen en/of klei. In de grond is sprake van bijmengingen met bodemvreemde materialen. Het betreft bijmengingen met baksteen, metselpuin en aardewerk (in de maten van sporen tot zwak) in de bovengrond (tot max. 0,7 m-mv). Ter plaatse van boring 07 (één van de gedempte sloten) is in de ondergrond sprake van sporen metselpuin, baksteen en glas evenals een zwakke bijmenging met slib.

Op basis van de analyse- en toetsingsresultaten blijkt de bovengrond niet (MM01) tot hooguit licht (MM02 en MM03) verontreinigd te zijn met lood of PCB. Voor de overige parameters wordt de detectiegrens niet overschreden.

In de ondergrond is het zand (MM05) niet verontreinigd met de onderzochte parameters. De klei (MM06) is hooguit licht verontreinigd met nikkel.

Het zand met bodemvreemde bijmengingen waaronder slib ter plaatse van één van de gedempte sloten (M04) is niet verontreinigd met de onderzochte parameters. Naar alle waarschijnlijkheid zijn de sloten gedempt met gebiedseigen grond.

PFAS

Ten aanzien van PFAS is het zand te classificeren als klasse 'landbouw/natuur'.

Grondwater

Aan het bemonsterde grondwater zijn geen afwijkingen waargenomen die kunnen duiden op een eventuele bodemverontreiniging. De gemeten waarden voor de zuurgraad en het elektrisch geleidingsvermogen duiden niet op een eventuele verontreiniging van het grondwater. Opgemerkt wordt dat de troebelheid verhoogd is ten opzichte van de natuurlijke troebeling die maximaal 10 NTU bedraagt. De hoge troebeling duidt op de aanwezigheid van veel onopgeloste bestanddelen (colloïden).

Het grondwater overschrijdt ter plaatse van peilbuis 18a de index voor barium. Ter plaatse van boring 9 is het grondwater hooguit licht verontreinigd met barium. De verhoogde concentraties met barium worden toegeschreven aan natuurlijk oorzaken. Derhalve wordt aanvullend onderzoek niet doelmatig geacht

Resumé

Middels onderhavig onderzoek is de milieuhygiënische kwaliteit van de grond en het grondwater afdoende mate vastgelegd. De grond is maximaal licht verontreinigd. Voor het grondwater wordt hooguit de index voor barium overschreden. De verhoogde concentraties barium hebben vermoedelijk een natuurlijke oorzaak. De onderzoeksresultaten geven geen aanleiding tot het uitvoeren van vervolgonderzoek.

3.5 TOETSING HYPOTHESE

De op basis van het milieuhygiënisch vooronderzoek vastgestelde onderzoekshypothese is getoetst aan de resultaten van het verkennend bodemonderzoek. De toetsing van de hypothese is in onderstaande tabel opgenomen. Indien van toepassing is, bij een (gedeeltelijk) onjuiste hypothese de invloed op representativiteit van het onderzoek in relatie met de gevolgde onderzoeksstrategie aangegeven.

TABEL 3.5.1: Hypothese en onderzoeksstrategie

Gehele terrein/on	derzoekslocatie
Hypothese	Onverdacht
Toetsing	Op basis van de onderzoeksresultaten wordt de hypothese:
	Verworpen (formeel)
	Reden: in de grond komen lichte verontreinigingen voor. Voor het grondwater wordt hooguit de index voor barium overschreden.
Representativiteit	Naar onze mening is de toegepaste onderzoeksstrategie voldoende representatief voor het vastleggen van de milieukundige bodemkwaliteit ter plaatse van de onderzoekslocatie. Aanvullende onderzoeksinspanningen worden niet noodzakelijk geacht.

4. VERKENNEND ONDERZOEK ASBEST

4.1 ONDERZOEKSSTRATEGIE

Ter bepaling van de milieuhygiënische bodemkwaliteit binnen de begrenzing van de onderzoekslocatie ten aanzien van asbest is de norm NEN 5707:2017 gehanteerd.

De onderzoeksstrategie is gebaseerd op de hypothese zoals deze is vastgesteld op basis van het beknopt vooronderzoek, zie hoofdstuk 2. Voor het onderhavige onderzoek is de onderzoeksstrategie voor een verkennend onderzoek asbest op diffuus belaste locaties met een heterogeen verdeelde asbestverontreiniging op schaal van de monsterneming gehanteerd.

Het onderzoek richt zich op de verdachte bodemlaag. Voor de onderzoekslocatie is, op basis van het vooronderzoek, de bodemlaag vanaf het maaiveld tot een diepte van 0,5 m-mv als verdachte bodemlaag aangemerkt.

4.2 VISUELE INSPECTIE MAAIVELD

Controle voorwaarden maaiveldinspectie

Bij de uitvoering van de visuele inspectie van het maaiveld geldt een aantal voorwaarden. Deze voorwaarden zijn in onderstaande tabel opgenomen. Per voorwaarde is aangegeven of aan deze voorwaarde is voldaan. Als er niet aan voldaan is, is de oorzaak aangegeven.

Wanneer van een verdachte locatie geen visuele inspectie van het maaiveld kan worden uitgevoerd kan geen verdere opdeling worden gemaakt in verdachte en onverdachte deellocaties en moet de hele locatie als verdacht worden beschouwd.

TABEL 4.2.1: Voorwaarden maaiveldinspectie

Voorwaarde	Omschrijving	Voldaan
Het maaiveld moet vrij inspecteerbaar zijn	Er moet een zo groot mogelijk deel van het te inspecteren maaiveld vrij zijn van objecten (afdeklagen, verhardingen, opgeslagen goederen, afval enz.). Daarnaast is het noodzakelijk dat de aanwezigheid van vegetatie (gras, struiken, bladeren enz.) geen belemmering vormen voor de maaiveldinspectie. Ook behoort de te inspecteren oppervlakte voldoende representatief te zijn voor de gehele (deel)locatie. Er mag geen groot aaneengesloten deel van de (deel)locatie niet inspecteerbaar zijn. Onvoldoende inspecteerbare delen vallen buiten het inspectiegebied en blijven als asbestverdacht aangemerkt.	Nee
De toplaag moet droog en onbesneeuwd zijn	Grond zal nooit helemaal droog zijn; in dit geval wordt met 'droog' bedoeld dat het vochtgehalte dusdanig laag is dat er geen belemmeringen ontstaan voor de visuele inspectie. Het betreft dus veldvochtige grond zonder dat hierop plassen enz. voorkomen. Bij veel neerslag zal het bodemoppervlak na verloop van tijd te nat worden om een goede inspectie uit te voeren.	Ja
Er moet voldoende licht en zicht zijn	De hoeveelheid licht en zicht mag geen beperkende factor zijn voor een optimale visuele inspectie. Dit betekent dat de weersomstandigheden dusdanig behoren te zijn dat er geen belemmeringen optreden voor de visuele inspectie. In algemene zin betekent dit: geen neerslag (regen, hagel, sneeuw), voldoende daglicht en geen hevige mist. Bij onvoldoende daglicht is het gebruik van kunstlicht een goed alternatief.	Ja
Conclusie	Aan de voorwaarden wordt niet voldaan. De locatie is geheel begroeid met gras. wordt de gehele locatie als verdacht ten aanzien van asbest beschouwd.	Derhalve

Tijdens de visuele inspectie van het maaiveld zijn op het maaiveld géén stukken asbestverdacht plaatmateriaal aangetroffen.

4.3 VISUELE INSPECTIE GROND

Een samenvatting van de tijdens het veldonderzoek uitgevoerde werkzaamheden is opgenomen in de navolgende tabel. De posities van de genoemde meetpunten zijn weergegeven op situatietekening 1.2 die in bijlage 1 is opgenomen.

TABEL 4.3.1: Samenvatting veldonderzoek

TABEL 4.3. I. Samenvalli	ng voladiladizadik			NO.				
Uitvoeringsperiode	25-03-2024							
Uitvoerende partij	IDDS Milieu	IDDS Milieu						
BRL SIKB / protocol	BRL SIKB 2000 Protocol 2018							
Onderzoeksaspect	Туре	Aantal	Codering	Bijzonderheden				
Gehele terrein	Inspectiegat	13	01, 02, 04, 06, 08, 09, 10, 12, 13, 15, 16, 17, 19	-				
	Inspectiegat met boring	6	03, 05, 07, 11, 14,					

Uitvoeringswijze

Het veldonderzoek is uitgevoerd door IDDS Milieu. Het onderzoek van de grond is uitgevoerd onder certificaat van de BRL SIKB 2000, protocol 2018. Het procescertificaat en de hierbij behorende keurmerken zijn van toepassing op de activiteiten met betrekking tot het veldonderzoek en de overdracht van de monsters, inclusief de daarbij behorende veldwerkregistratie aan een erkend laboratorium of aan de opdrachtgever. Tijdens het veldonderzoek is niet afgeweken van de beoordelingsrichtlijn. Het veldverslag is opgenomen in bijlage 3.1.

Zintuiglijk waargenomen bijzonderheden

Het opgeboorde en vrijgegraven bodemmateriaal is visueel geïnspecteerd op afwijkingen en op het voorkomen van bodemvreemde bijmengingen die kunnen duiden op een mogelijke verontreiniging van de bodem. Het materiaal is met name beoordeeld op de aard, grootte en gradatie van voorkomen. Sommige verontreinigingen die in de bodem aanwezig zijn, kunnen aan de geur herkend worden. Benadrukt dient te worden dat, indien tijdens de veldwerkzaamheden passieve geurwaarnemingen worden gedaan, deze gekarakteriseerd worden en per boorpunt worden beschreven.

Indien er sprake is van afwijkingen en/of bijmengingen zijn deze, per meetpunt en per bodemlaag, aangegeven in de boorstaten die zijn opgenomen in bijlage 3. Op basis van de boorstaten blijkt in hoofdlijnen het navolgende:

- In de grond is sprake van bijmengingen met bodemvreemde materialen. Het betreft bijmengingen met baksteen, metselpuin en aardewerk (in de maten van sporen tot zwak) in de bovengrond (tot max. 0,7 m-mv);
- Ter plaatse van boring 07 (één van de gedempte sloten) is in de ondergrond sprake van sporen metselpuin, baksteen en glas evenals een zwakke bijmenging met slib.

Inspectie grove fractie

Bij de inspectie van de grove fractie is de vrijgegraven grond uit de inspectiegaten geïnspecteerd op de aanwezigheid van asbestverdacht materiaal (grove fractie). Hierbij is de vrijgegraven grond gezeefd of uitgeharkt. Indien aanwezig is het asbestverdachte materiaal bemonsterd. Op basis van de inspectie van de grove fractie blijkt het navolgende:

- In het vrijgegraven en geïnspecteerde materiaal uit alle inspectiegaten is visueel geen asbestverdacht materiaal aangetroffen.

Monstername fijne fractie

Op basis van de resultaten van het veldonderzoek zijn meerdere mengmonsters samengesteld. Bij het samenstellen van de mengmonsters is rekening gehouden met de verschillende grondsoorten, de bijmengingen (gradaties en samenstelling) en het voorkomen van asbestverdacht materiaal. De navolgende mengmonsters zijn samengesteld:

TABEL 4.3.2: Overzicht samengestelde (grond)mengmonsters

Monstercode	(deel)monsters en traject (m-mv)	Bodemtype en bijzonderheden	Opmerkingen / bijzonderheden
ASB-MM01	01 (0,0 - 0,5) 02 (0,0 - 0,5) 03 (0,0 - 0,5) 04 (0,0 - 0,5) 05 (0,0 - 0,5) 06 (0,0 - 0,5)	Zand, sporen baksteen, sporen metselpuin, sporen aardewerk, zwak baksteenhoudend, sporen glas	-
ASB-MM02	07 (0,0 - 0,5) 08 (0,0 - 0,5) 09 (0,0 - 0,5) 10 (0,0 - 0,5) 11 (0,0 - 0,5) 12 (0,0 - 0,5)	Zand, zwak baksteenhoudend, sporen metselpuin, sporen baksteen, sporen aardewerk	-
ASB-MM03	13 (0,0 - 0,5) 14 (0,0 - 0,5) 15 (0,0 - 0,5) 16 (0,0 - 0,5) 17 (0,0 - 0,5) 18 (0,0 - 0,5)	Zand, sporen baksteen, sporen metselpuin, zwak metselpuinhoudend	-

4.4 UITVOERING LABORATORIUMONDERZOEK

Voor de verrichting van het chemisch onderzoek is het monster overgebracht naar een (RvA) geaccrediteerd en AS3000 erkend laboratorium. De naam en contactgegevens van het betreffende laboratorium, alsmede de data waarop de monstervoorbehandeling en het analytisch onderzoek is uitgevoerd, zijn aangegeven op het analysecertificaat, welke in bijlage 4 is opgenomen. In het laboratorium is, op het voornoemde monster, de volgende bepaling uitgevoerd:

- grondmonster: asbest grond NEN 5898 <17,5kg

De resultaten van het laboratoriumonderzoek zijn weergegeven op het analysecertificaat. In tabel 4.4.1 zijn de resultaten beknopt weergegeven.

TABEL 4.4.1: Overzicht resultaten laboratoriumonderzoek

Monstercode	(deel)monsters en traject (m-mv)	Bodemtype en bijzonderheden	Opmerking	Totale gewogen gehalte asbest
ASB-MM01	01 (0,0 - 0,5) 02 (0,0 - 0,5) 03 (0,0 - 0,5) 04 (0,0 - 0,5) 05 (0,0 - 0,5) 06 (0,0 - 0,5)	Zand, sporen baksteen, sporen metselpuin, sporen aardewerk, zwak baksteenhoudend, sporen glas	Fijne fractie	<0,6 mg/kg ds
ASB-MM02	07 (0,0 - 0,5) 08 (0,0 - 0,5) 09 (0,0 - 0,5) 10 (0,0 - 0,5) 11 (0,0 - 0,5) 12 (0,0 - 0,5)	Zand, zwak baksteenhoudend, sporen metselpuin, sporen baksteen, sporen aardewerk	Fijne fractie	<0,5 mg/kg ds
ASB-MM03	13 (0,0 - 0,5) 14 (0,0 - 0,5) 15 (0,0 - 0,5)	Zand, sporen baksteen, sporen metselpuin, zwak metselpuinhoudend, sporen	Fijne fractie	<0,4 mg/kg ds

Monstercode	(deel)monsters en traject (m-mv)	Bodemtype en bijzonderheden	Opmerking	Totale gewogen gehalte asbest
	16 (0,0 - 0,5) 17 (0,0 - 0,5) 18 (0,0 - 0,5)	aardewerk		

[#] De serpentijn-asbestconcentratie vermeerderd met 10 maal de amfiboolconcentraties.

4.5 INTERPRETATIE

De interventiewaarde voor asbest in grond is vastgesteld op 100 mg/kg gewogen (de serpentijnasbestconcentratie vermeerderd met 10 maal de amfiboolconcentraties). Indien de interventiewaarde wordt overschreden is ongeacht het bodemvolume sprake van een overschrijding van de toelaatbare kwaliteit van de bodem.

Het resultaat van het milieukundig onderzoek is een uitspraak over de mogelijke verontreiniging van de bodem op basis van verzamelde stukken asbesthoudend materiaal en (meng)monsters grond. Aan de hand van het verkregen indicatieve gehalte aan asbest wordt nagegaan of nader onderzoek al dan niet noodzakelijk is. Door de lagere onderzoeksintensiteit van het verkennend onderzoek kan in deze fase niet direct worden getoetst aan de interventiewaarde. In het verkennend onderzoek wordt het gehalte getoetst aan de interventiewaarde gecorrigeerd met een factor 2. Deze correctiefactor is een maat voor de betrouwbaarheid van het verkennend onderzoek in relatie tot het nader onderzoek.

Indien het asbestgehalte kleiner is dan de helft van de interventiewaarde is het statistisch aannemelijk dat ook in een nader onderzoekstraject de interventiewaarde niet zal worden overschreden. In deze gevallen geldt er geen noodzaak tot het uitvoeren van een nader onderzoek asbest. Bij een asbestgehalte groter dan de helft van de interventiewaarde is een nader onderzoek asbest verplicht. De hoogste bepaalde waarde binnen een (deel)locatie is hiervoor bepalend.

De conclusie dat op een locatie geen asbest is aangetoond, kan pas worden getrokken wanneer visueel geen asbesthoudend materiaal wordt waargenomen én bij de analyse van grondmonsters geen analytisch aantoonbaar gehalte aan asbest wordt gevonden.

Geen asbest aangetoond

In de mengmonsters van de grond is geen asbestverdacht materiaal aangetroffen (grove fractie) en is in de grond geen asbest aangetoond (fijne fractie; ASB-MM01 t/m ASB-MM03).

Het aangetoonde gehalte is lager dan 0,5 x interventiewaarde (50 mg/kg ds). Aangezien het asbestgehalte kleiner is dan de helft van de interventiewaarde is het statistisch aannemelijk dat ook in een nader onderzoekstraject de interventiewaarde niet zal worden overschreden. Er is derhalve geen noodzaak tot het uitvoeren van een nader onderzoek asbest.

5. CONCLUSIES EN AANBEVELINGEN

5.1 CONCLUSIES

In opdracht van Goedhart Bouwmarkt Alphen aan den Rijn BV is door IDDS een beknopt vooronderzoek en een verkennend actualiserend milieukundig bodem- en asbestonderzoek uitgevoerd. De onderzoekslocatie is gelegen aan de A. Einsteinweg te Alphen aan den Rijn Het onderzoek is uitgevoerd in verband met de voorgenomen aankoop en potentiële herontwikkeling van het terrein.

De doelstelling van het onderzoek is om te bepalen of er in de grond en/of het grondwater ter plaatse van de onderzoekslocatie sprake is van een (sterke) verontreiniging.

Verkennend bodemonderzoek

- In de grond is sprake van bijmengingen met bodemvreemde materialen. Het betreft bijmengingen met baksteen, metselpuin en aardewerk (in de maten van sporen tot zwak) in de bovengrond (tot max. 0,7 m-mv);
- Ter plaatse van boring 07 (één van de gedempte sloten) is in de ondergrond sprake van sporen metselpuin, baksteen en glas evenals een zwakke bijmenging met slib.
- De bovengrond is niet tot hooguit licht verontreinigd met lood of PCB;
- De ondergrond is niet (zand) tot hooguit licht (klei) verontreinigd met nikkel;
- Het zand met bodemvreemde bijmengingen waaronder slib ter plaatse van één van de gedempte sloten is niet verontreinigd met de onderzochte parameters. Naar alle waarschijnlijkheid zijn de sloten gedempt met gebiedseigen grond;
- Ten aanzien van PFAS is het zand te classificeren als klasse 'landbouw/natuur';
- Het grondwater overschrijdt plaatselijk de index voor barium. De verhoogde concentraties met barium worden toegeschreven aan natuurlijk oorzaken.

Middels onderhavig onderzoek is de milieuhygiënische kwaliteit van de grond en het grondwater afdoende mate vastgelegd. De grond is maximaal licht verontreinigd. Voor het grondwater wordt hooguit de index voor barium overschreden. De verhoogde concentraties barium hebben vermoedelijk een natuurlijke oorzaak. De onderzoeksresultaten geven geen aanleiding tot het uitvoeren van vervolgonderzoek.

Verkennend asbestonderzoek

- In de mengmonsters van de grond is geen asbestverdacht materiaal aangetroffen (grove fractie):
- In de grond is geen asbest aangetoond (fijne fractie).

Er is derhalve geen noodzaak tot het uitvoeren van een nader onderzoek asbest.

5.2 AANBEVELINGEN

Wij adviseren u onderhavige onderzoeksrapportage bij een eventuele aanvraag van een omgevingsvergunning te voegen.

Indien bij de voorgenomen (bouw)werkzaamheden grond wordt ontgraven én afvoer van grond plaatsvindt moet tenminste een week voor de start een melding ingevolge §4.119 van het Besluit activiteiten leefomgeving worden verricht. Als de ontgraven grond op locatie volledig wordt teruggebracht in de bodem is een melding niet nodig. Opgemerkt wordt dat de ontgraven grond niet langer dan 8 weken na beëindiging van het graven tijdelijk mag worden opgeslagen op locatie.

Bij afvoeren en hergebruik van grond is de regelgeving onder de Omgevingswet van toepassing.

Het bodemonderzoek is steekproefsgewijs uitgevoerd. Hierdoor is het niet uit te sluiten dat plaatselijk sprake kan zijn van een afwijkende bodemopbouw. Indien op de locatie graafwerkzaamheden worden uitgevoerd wordt derhalve aanbevolen om alert te blijven op plaatselijke afwijkingen in de bodem die kunnen wijzen op een eventuele bodemverontreiniging.

6. BETROUWBAARHEID

Het onderhavige onderzoek is op zorgvuldige wijze verricht volgens de algemeen geaccepteerde inzichten en methoden. Echter, een verkennend bodemonderzoek is gebaseerd op het nemen van een beperkt aantal monsters en chemische analyses.

IDDS streeft naar een zo groot mogelijke representativiteit van het onderzoek. Toch blijft het mogelijk dat lokaal afwijkingen in de milieuhygiënische kwaliteit of opbouw van het bodemmateriaal voorkomen, ten opzichte van de in onderhavig rapport beschreven situatie. IDDS acht zich niet aansprakelijk voor eventuele schade die als gevolg van deze afwijkingen zou kunnen ontstaan.

Hierbij dient tevens te worden gewezen op het feit dat het uitgevoerde verkennend onderzoek een momentopname is. Beïnvloeding van de milieuhygiënische kwaliteit van de bodem (grond en grondwater) zou plaats kunnen vinden na uitvoering van dit onderzoek door, bijvoorbeeld het bouwrijp maken van de locatie, het aanvoeren van grond van elders, toevoeging van bodemvreemde materialen of het naar de onderzoekslocatie verspreiden van verontreinigingen van verder gelegen terreinen via het grondwater.

Naarmate de periode tussen de uitvoering van het onderzoek en het gebruik van de resultaten langer wordt, zal meer voorzichtigheid betracht moeten worden. In veel gevallen hanteren de beoordelende instanties termijnen (doorgaans maximaal 3 jaar voor een bedrijfslocatie en maximaal 5 jaar voor een woonlocatie) waarbinnen de onderzoeksresultaten representatief worden geacht te zijn.

Bij het gebruik van de resultaten van dit onderzoek dient het doel van het onderzoek goed in ogenschouw te worden genomen. Zo zullen de resultaten van een onderzoek naar het voorkomen en/of verspreiding van één specifieke verontreinigende stof geen uitsluitsel bieden omtrent de aanwezigheid aan verhoogde concentraties van overige, niet onderzochte verontreinigende stoffen.

BIJLAGE 1.1

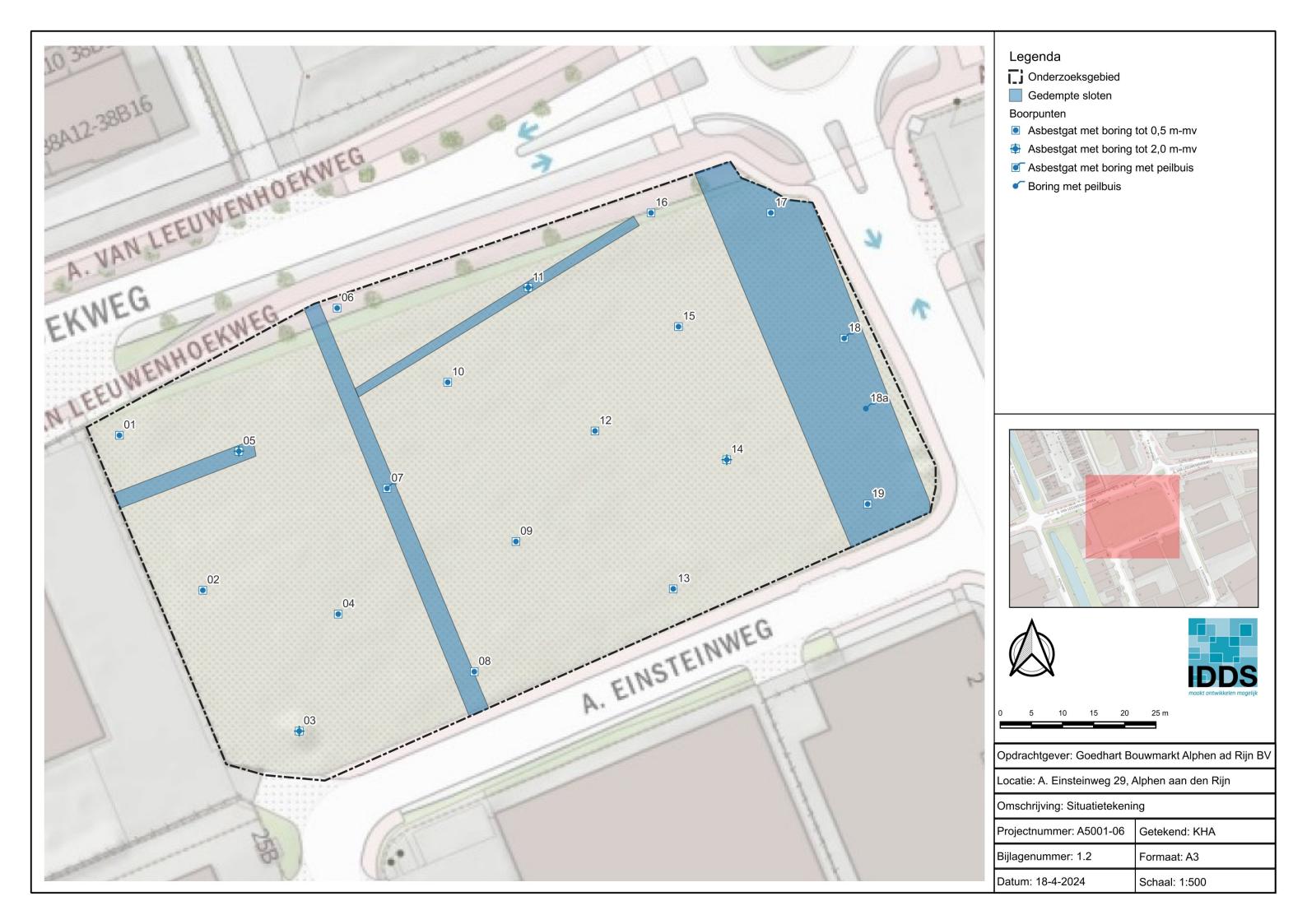
Topografische kaart

Legenda

Locatie-aanduiding

0	200	400	600	800	1.000 m

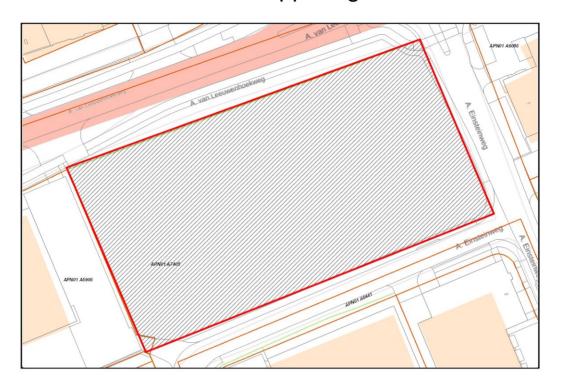
Opdrachtgever: Goedhart Bouwmarkt Alphen ad Rijn BV


Locatie: A. Einsteinweg 29, Alphen aan den Rijn

Omschrijving: Topografische kaart

Projectnummer: A5001-06	Getekend: KHA
Bijlagenummer: 1.1	Formaat: A4
Datum: 26-3-2024	Schaal: 1:20000

BIJLAGE 1.2 Situatietekening



BIJLAGE 2.1
Rapportage Omgevingsdienst Midden-Holland

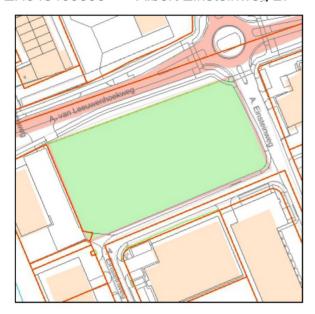
Atlas Rapportage

Selectie met getekend gebied

<u>Kaartlagen</u>

- 1. Bodemlocatie
- 2. Bodemonderzoeksrapport
- 3. Verontreinigingscontour
- 4. Saneringscontour
- 5. Zorgmaatregel
- 6. Ondergrondse brandstoftanks
- 7. Meldingen Besluit bodemkwaliteit
- 8. Bedrijfsactiviteiten
- 9. Slootdempingen TBK

Afdrukdatum: 21-3-2024


Bodemlocatie

Locatienummer

Omschriivina

ZH048409595

Albert Einsteinweg 27

Status locatie

Vervolgactie Wbb: voldoende onderzocht

Status beschikking:

Status onderzoeken: niet ernstig, licht tot matig verontreinigd

Besluiten

Type: Vaststellen rapportage OO

Datum: 01-01-1900 Status: Definitief

Onderzoeken

 Actualiserend onderzoek PFAS Albert Einsteinweg 27 en 29, rapportnummer 0459241.100, Antea Group, 17-01-2020

https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2020023468

- Verkennend asbest- en bodemonderzoek Albert Einsteinweg 27 / 29, rapportnummer 0432255.00, Antea Group, 04-06-2018 https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2018176541
- Historisch vooronderzoek A. Einsteinweg 27 29, rapportnummer 0432255.00, Antea Group, 19-03-2018

https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2018086821

- Verkennend en aanvullend bodemonderzoek Albert Einsteinweg 27, rapportnummer 1210E743/GGE/rap1, IDDS BV, 20-03-2013

https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2015344378

 Verkennend bodemonderzoek A. Einsteinweg 27, rapportnummer 1746, Grondslag B.V., 06-05-1996

https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2015184858

Historisch bodembestand

Bedriifsnaam: GEMEENTE ALPHEN AAN DEN RYN

Adres: Albert Einsteinweg 27, 2408AP ALPHEN AAN DEN RIJN

Omschrijving: sociale werkplaats

UBI code/NSX score: 36631 / 0.0

Dossier: ALPHEN AD RIJN 764 (SA RIJNLANDS MIDDEN)

Bedrijfsnaam: GEMEENTE ALPHEN AAN DEN RYN

Adres: Albert Einsteinweg 27, 2408AP ALPHEN AAN DEN RIJN

Omschrijving: sociale werkplaats

UBI code/NSX score: 36631 / 0.0

Dossier: GRIFFIE/1975-1987/145758 (PZH: 1945-1996/KONINGSK.)

Activiteiten

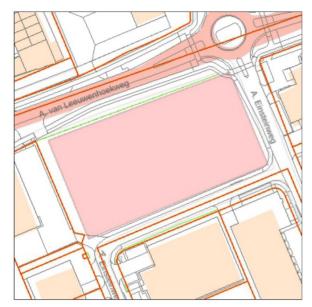
Omschrijving: onverdachte activiteit

UBI code: 000000 NSX score: 0,0

Omschrijving: sociale werkplaats

UBI code: 36631 NSX score: 0,0

Aanvullende informatie slootdemping


(Geen)

Kaartlaag: Bodemlocatie 2 van 2

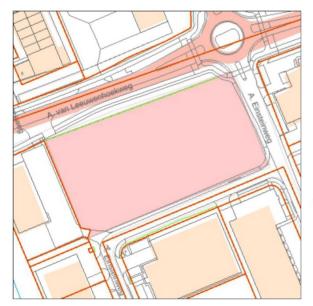
Bodemonderzoeksrapport

Omschrijving

Verkennend asbest- en bodemonderzoek Albert Einsteinweg 27 / 29

Locatiecode: ZH048409595

Rapportnummer: 0432255.00


Rapportdatum: 43255

Rapportauteur: Antea Group

Download Rapport

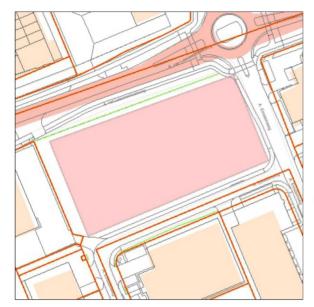
Omschrijving

Verkennend bodemonderzoek A. Einsteinweg 27

Locatiecode: ZH048409595

Rapportnummer: 1746

Rapportdatum: 35191


Rapportauteur: Grondslag B.V.

Download Rapport

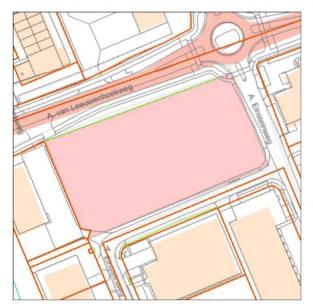
Bodemonderzoeksrapport

Omschrijving

Verkennend en aanvullend bodemonderzoek Albert Einsteinweg 27

Locatiecode: ZH048409595

Rapportnummer: 1210E743/GGE/rap1


Rapportdatum: 41353

Rapportauteur: IDDS BV

Download Rapport

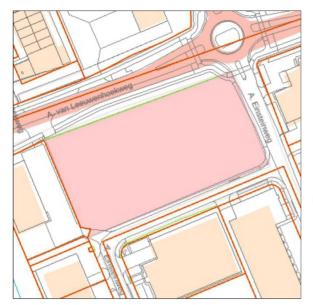
Omschrijving

Actualiserend onderzoek PFAS Albert Einsteinweg 27 en 29

Locatiecode: ZH048409595

Rapportnummer: 0459241.100

Rapportdatum: 43847


Rapportauteur: Antea Group

Download Rapport

Bodemonderzoeksrapport

Omschrijving

Historisch vooronderzoek A. Einsteinweg 27 - 29

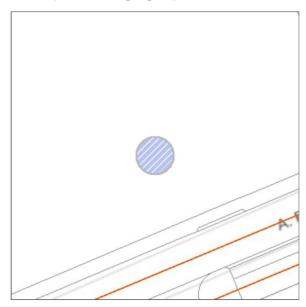
Locatiecode: ZH048409595

Rapportnummer: 0432255.00

Rapportdatum: 43178

Rapportauteur: Antea Group

Download Rapport



Bedrijfsactiviteiten

Omschrijving

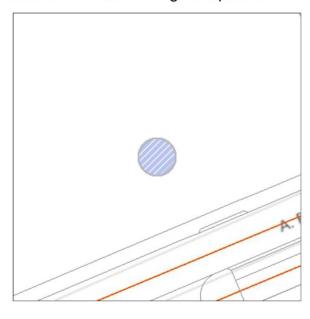
Schietsportvereniging Alphen

Locatie: A. Einsteinweg 27 Alphen aan

den Rijn

Opmerking branche: Sport en recreatie

Dossiernummer: L-017959


Milieu-categorie: 4

Milieu Wettelijk Kader: Type A

Status: Gesloten

Omschrijving

Sociale Werkvoorziening De Spoorhaven

Locatie: A. Einsteinweg 27 Alphen aan

den Rijn

Opmerking branche: Sport en recreatie

Dossiernummer: L-017960

Milieu-categorie: 2

Milieu Wettelijk Kader: Type B

Status: Gesloten

Kaartlaag: Bedrijfsactiviteiten 1 van 1

Toelichting op verstrekte informatie

Bodemlocatie

In het Bodem Informatie Systeem (BIS) zijn bodemlocaties ingetekend. Een bodemlocatie is een locatie waar iets bekend is over de bodemkwaliteit of een mogelijke bodemverontreiniging. Vaak zijn op een bodemlocatie één of meerdere onderzoeken uitgevoerd, maar dat hoeft niet. De bodemlocatie kan ook een verdenking van een bodemverontreiniging betreffen, op basis van historische informatie.

Hieronder volgt een toelichting per item:

Locatienummer	Uniek nummer van de locatie in het BIS
Omschrijving	Naam van de locatie zoals bekend in het BIS
	De verplichting die in het kader van de Wet bodembescherming op de locatie rust. Let op: Indien er in het kader van de Wbb geen vervolgactie noodzakelijk is ("geen vervolg") wil dit niet zeggen dat er in een ander kader geen verplichting bestaat om de bodem te onderzoeken. Bij een bouwvergunning of grondverzet kan bijvoorbeeld alsnog een bodemonderzoek noodzakelijk zijn. Zie hiervoor de betreffende nota's op de website van de Omgevingsdienst (nota Bodemkwaliteit bij Bouwen en Nota Bodembeheer). "Geen vervolg" wil zeggen dat er bij ongewijzigd gebruik geen onderzoeks- of saneringsnoodzaak bestaat.
Status beschikking	De beschikkingstatus van de locatie op basis van het meest recente besluit.
Status onderzoeken	De verontreinigingstatus van de gehele locatie op basis van alle uitgevoerde bodemonderzoeken. Als alleen een historisch (voor-) onderzoek is uitgevoerd kan alleen een verwachting worden uitgesproken (potentieel verontreinigd of potentieel ernstig). Als een bodemonderzoek is uitgevoerd is de locatie wel of niet ernstig verontreinigd.
Besluiten	De besluiten die op basis van de Wet bodembescherming zijn genomen op de locatie worden hier weergegeven. Eventuele belemmeringen als gevolg van deze besluiten zijn ingeschreven bij het Kadaster.

Het Historisch bodembestand (HBB) is integraal opgenomen in de kaart met Bodemlocaties en bevat verschillende soorten historische informatie, namelijk over voormalige bedrijfsactiviteiten en over dempingen. Beide worden hieronder toegelicht.

Voormalige bedrijfsactiviteiten

Tussen 1995 en 1997 heeft de provincie Zuid-Holland een inventarisatie laten uitvoeren van potentieel verontreinigde voormalige bedrijfsterreinen. Voor de inventarisatie is gebruik gemaakt van twee archiefbronnen, te weten:

- Het archief van de Kamers van Koophandel in de provincie.
- De op grond van de Hinderwet aan bedrijven verleende vergunningen.

Met beide bronnen wordt ruwweg de tijdsperiode 1824 tot 1997 gedekt. Uit de enorme hoeveelheid informatie die in de genoemde bronnen ligt opgeslagen, is een selectie gemaakt. Met deze inventarisatie kan worden bekeken of er in het verleden bodembedreigende bedrijfsactiviteiten op een perceel hebben plaatsgevonden. Met de NSX-score kan een inschatting worden opgemaakt hoe bodembedreigend de genoemde vergunde activiteit is. Deze score loopt van 0 tot 1000. Een score van 0 betekent dat de activiteit niet bodembedreigend is. Een score van 1000 betekent dat de activiteit (in grote mate) bodembedreigend is. Een vermelding met een hoge score hoeft niet te betekenen dat er ook daadwerkelijk bodemverontreiniging op het perceel aanwezig is. Bodemonderzoek zal dit moeten uitwijzen. Onder "Vindplaats dossier" wordt vermeld in welk archief het Hinderwetdossier van de voormalige bedrijfsactiviteiten kunnen worden gevonden. (Zie de introductiepagina van de Atlas Midden-Holland voor een toelichting op de archieven en dossiernummers).

Slootdempingen

In 1995 is voor het gehele landelijke gebied in Zuid-Holland een onderzoek naar stortplaatsen en slootdempingen uitgevoerd. Het betrof een luchtfoto-interpretatie, waarbij luchtfoto's uit 1955 zijn vergeleken met luchtfoto's uit 1992. Daarbij is vastgesteld welke waterlopen en waterplassen die in 1955 nog zichtbaar waren, in 1992 waren 'verdwenen' en waar dus sprake moest zijn van een demping. Op deze wijze werden circa 40.000 gedempte sloten opgespoord. Als er sprake is van een slootdemping wil nog niet zeggen dat er ook sprake is van een bodemverontreiniging.

Sloten die zijn gedempt bij het bouwrijp maken van woonwijken of bedrijfsterreinen zijn in een deel van de Krimpenerwaard vastgelegd in een aparte kaart door het Technisch Bureau in de Krimpenerwaard (TBK), tegenwoordig Ingenieursbureau Krimpenerwaard. Het betreft gebieden die in de periode 1945-2000 zijn ontwikkeld in opdracht van de toenmalige gemeenten Ouderkerk, Nederlek en Bergambacht. Voor het grootste deel van Midden-Holland is deze informatie niet beschikbaar.

Bodemonderzoeksrapporten

Alle bij de Omgevingsdienst bekende bodemonderzoeksrapporten zijn ingevoerd in het Bodem Informatie Systeem. Niet alle uitgevoerde bodemonderzoeken zijn bekend bij de Omgevingsdienst. Bijvoorbeeld onderzoeken die zijn uitgevoerd in het kader van een particuliere grondtransactie zijn vaak niet bekend bij de overheid en derhalve ook niet aanwezig in het Bodem Informatie Systeem (BIS). Indien u in het bezit bent van een dergelijk onderzoeksrapport verzoeken wij u deze op te sturen naar de Omgevingsdienst, zodat wij dit kunnen invoeren in het systeem.

Verontreinigingscontour

Op locaties waar sprake is van een geval van ernstige bodemverontreiniging is op recent onderzochte locaties een contour van de interventiewaarde-overschrijding ingetekend.

Saneringscontour

Als er recent een sanering heeft plaatsgevonden, wordt de contour van het gesaneerde gebied getoond.

Zorgmaatregel

Als er op een gesaneerde locatie een restverontreiniging is achtergebleven kan er een zorgmaatregel van toepassing zijn.

Ondergrondse tanks

Een tank is volgens wettelijke richtlijnen gesaneerd als er een kenmerk van een tanksaneringscertificaat is ingevuld achter het kopje "Kiwa-code". Het kan voorkomen dat onder het kopje <u>Ondergrondse tanks</u> geen tank is weergeven, maar bij het item "Activiteiten" bij de Bodemlocatie wel een tank is aangegeven (en andersom). Indien onduidelijkheid bestaat over de aanwezigheid en/of status van een tank zal nader archief en/of bodemonderzoek nodig zijn om na te gaan of een tank aanwezig is.

Meldingen Besluit bodemkwaliteit

Vanaf 1 juli 2008 moet nagenoeg elke toepassing van grond en baggerspecie worden gemeld bij het Meldpunt Bodemkwaliteit. De meldingen kunnen worden geraadpleegd. De ligging is vaak indicatief, omdat het Meldpunt alleen een punt kan worden ingegeven.

Bedrijfsactiviteiten

De kaart bevat locaties waar nu een bedrijfsmatige activiteit plaatsvindt of in het (recente) verleden plaats heeft gevonden. Iedere bedrijfsmatige activiteit waarvoor een melding (Activiteitenbesluit) of vergunning in het kader van de Wet milieubeheer is vereist is opgenomen in de kaart. De Omgevingsdienst beheert het inrichtingenbestand sinds 2000. Alle inrichtingen (bedrijven) die vanaf die datum aanwezig waren, zijn terug te vinden in deze kaart als locatiedossier.

Als op een locatie geen inrichting meer aanwezig is, wordt deze aangeduid als "Gesloten". Alle locaties waar nu nog een bedrijfsmatige activiteit kan worden uitgevoerd worden aangeduid als "Actief".

De milieucategorie loopt van 1 (laag milieubelastend) tot 5 (hoog milieubelastend).

Inrichtingen die voor 1997 zijn opgeheven en als potentieel bodembedreigend zijn aangemerkt zijn opgenomen in het HBB-bestand en later als Bodemlocatie (zie bij Bodemlocatie).

Disclaimer

In de Atlas Midden-Holland wordt de bij de Omgevingsdienst Midden-Holland bekende informatie over de bodemkwaliteit getoond. De informatie is afkomstig uit het Bodem Informatie Systeem en wordt automatisch gegenereerd op basis van geografische ligging van het opgegeven perceel. Het betreft informatie over:

- bodemlocaties
- bodemonderzoeksrapporten
- verontreinigingscontouren
- saneringscontouren
- zorgmaatregelen
- ondergrondse brandstoftanks
- meldingen Besluit bodemkwaliteit
- slootdempingen
- huidige bedrijfsactiviteiten

Nadrukkelijk wordt erop gewezen dat alleen een recent bodemonderzoek betrouwbare informatie geeft over de kwaliteit van het betreffende perceel. Overige informatie moet worden beschouwd als indicatie voor de te verwachten bodemkwaliteit. Tevens wijzen wij u erop dat indien geen informatie voorhanden is dit niet automatisch betekent dat de bodem schoon is. De Omgevingsdienst heeft in dat geval geen informatie van dit perceel beschikbaar in het Bodem Informatie Systeem. Voor de bodeminformatie is alle zorg in acht genomen die redelijkerwijs gevergd kan worden. Fouten zijn echter niet uit te sluiten en de lezer dient niet zondermeer uit te gaan van de juistheid van de informatie. De Omgevingsdienst is dan ook nimmer aansprakelijk voor de gevolgen van activiteiten die worden ondernomen op basis van de informatie en voor alle directe en indirecte schade, van welke aard dan ook, voortvloeiend uit of in verband staand met het gebruik van de informatie. Evenmin is de Omgevingsdienst aansprakelijk voor de eventuele gevolgen van het (al dan niet tijdelijk) onbeschikbaar zijn van deze website of enige informatie op de website.

Topografische en kadastrale kaart

De Atlas Midden-Holland maakt voor de oriëntatie gebruik van twee achtergrondkaarten:

- de BRT Achtergrondkaart van PDOK (<u>P</u>ublieke <u>D</u>ienstverlening <u>O</u>p de <u>K</u>aart). Deze is afgeleid uit TOP10NL uit de Basisregistratie Topografie (BRT) met de straatnamen uit de Basisregistraties Adressen en Gebouwen (BAG).
- de Kadastrale kaart.

Beide kaarten zijn vrij toegankelijk en zonder restricties te gebruiken. Wel is bij (her-)gebruik de naamsvermelding van de bron (Kadaster, Basisregistratie Topografie) verplicht. De kaarten zijn afkomstig van PDOK. Zie ook www.nationaalgeoregister.nl

De Omgevingsdienst Midden-Holland is niet verantwoordelijk voor schade voortvloeiende uit of verband houdende met de inhoud of het gebruik van de kaarten.

Overige bepalingen

De Omgevingsdienst streeft ernaar de gepresenteerde informatie op deze site zo actueel mogelijk te houden. De Omgevingsdienst behoudt zich het recht voor om te allen tijde de informatie op deze site (inclusief de disclaimer) zonder voorafgaande mededeling te wijzigen. De Omgevingsdienst kan geen waarborg geven dat deze site te allen tijde zonder fouten is, noch kan zij de juistheid en actualiteit garanderen van informatie gevonden op sites die aan deze site gekoppeld zijn. Noch deze site noch enige informatie op deze site heeft een officiële status. De Omgevingsdienst accepteert geen enkele aansprakelijkheid voor de inhoud van deze website of de getoonde informatie. Deze getoonde informatie kan daarom niet gebruikt worden als basis voor enige claim.

BIJLAGE 2.2 Fotoreportage

Fotoreportage

Locatiefoto 1

Locatiefoto 2

Projectcode: A5001

Locatiefoto 3

Locatiefoto 4

Locatiefoto 5

Locatiefoto 6

Locatiefoto 7

Locatiefoto 8

Locatiefoto 9

Locatiefoto 10

Locatiefoto 11

Locatiefoto 12

Locatiefoto 13

Foto boorpunt 14

BIJLAGE 3.1

Formulieren veldonderzoek

FV11 Bodem veldwerkformulier uitvoer

Projectnummer	A5001
Projectlocatie	A. Einsteinweg 29, Alphen aan den Rijn
Uitvoerend instantie	IDDS Milieu

Gecertificeerde veldmedewerker:

Datum	Veldmedewerker(s)	Protocol van toepassing	
26-3-2024		2001	

Overige medewerkers:

Assistenten	

Contact/voorinformatie/problemen:

Vraag	Ja / Nee	Toelichting
Contact gehad met adviseur of projectleider?	Ja	
Voorinformatie correct en volledig?	Ja	
Problemen opgetreden?	Nee	

Boorplan:

Vraag	Ja / Nee
Is afgeweken van het boorplan	Nee

Nummer pH/EC-lijst:

Is er een peilbuis geplaatst?	Nummer pH/EC-lijst:	
Ja	LY-433	

Asbest:

Vraag	Ja / Nee
Is asbest aangetroffen	Nee
Zo, aantal stukjes	
Bij welk boorpunt	
Getroffen maatregelen	

Protocol:

Vraag	Ja / Nee
Is het onderzoek volgens de aangegeven	Ja
protocollen uitgevoerd?	
Indien afwijking geef toelichting.	

_							
()	pm	۱er	١X:	n	σe	٥r	١.
_	ν.,			٠.	o'	٠.	٠.

-		

Hierbij verklaren de erkend veldwerker en de projectleider:

- dat het onderzoek is uitgevoerd binnen de reikwijdte en conform de eisen van de BRL-SIKB 2000 en het daarbij behorende protocol 2001
- het veldwerk onafhankelijk van de opdrachtgever is uitgevoerd. IDDS Milieu heeft geen belangen bij de resultaten van het uitgevoerde onderzoek. IDDS Milieu en haar medewerkers zijn geen eigenaar van de locatie of in de nabije toekomst te worden waar de veldwerkzaamheden worden uitgevoerd.
- Het procescertificaat van IDDS Milieu en het hierbij behorende keurmerk zijn uitsluitend van toepassing op de activiteiten inzake monsterneming en de overdracht van de monsters, inclusief de daarbij behorende veldwerkregistratie, aan een erkend laboratorium of de opdrachtgever.

Ondertekening

Erkend	26-3-2024	Geregistreerde	25-3-2024
veldmedewerker		projectleider	

De formulieren zijn digitaal ondertekend. Het moment van tekenen, de data weergegeven in het formulier en de verificatie van de personen die hebben getekend zijn vastgelegd in het kwaliteitssysteem van IDDS.

FV41 Asbest veldwerkformulier uitvoer

Projectnummer	A5001	
Projectlocatie	A. Einsteinweg 29, Alphen aan den Rijn	
Uitvoerend instantie	IDDS Milieu	

Gecertificeerde veldmedewerker:

Datum	Veldmedewerker(s)	Protocol van toepassing
26-3-2024		2018

Overige medewerkers:

Datum	Assistenten	
26-3-2024		

Contact/voorinformatie/problemen:

Vraag	Ja / Nee	Toelichting
Contact gehad met adviseur of projectleider?	Ja	
Voorinformatie correct en volledig?	Ja	
Problemen opgetreden?	Nee	

Boorplan:

Vraag	Ja / Nee
Is afgeweken van het boorplan	Nee

Vraag	Antwoord	
Bodemvocht > 12%	Ja	
Maatregelen bodemvocht <12%		
Neerslag	Geen	
Zicht	Meer dan 50m	
Vrij zichtbaar maaiveld (vrij van verharding, waterplassen, vegetatie, etc.)	<25%	
Inspectie-efficiëntie	< 50%	Toelichting: Gras

Protocol:

Vraag	Ja / Nee
Is het onderzoek volgens de aangegeven protocollen uitgevoerd?	Ja
Indien afwijking geef toelichting.	

Opmerkingen:

_			

Hierbij verklaren de erkend veldwerker en projectleider:

- dat het veldwerk onafhankelijk van de opdrachtgever is uitgevoerd.

Het onderzoek is uitgevoerd conform de eisen van de BRL-SIKB2000 en het daarbij behorende protocol 2018

- het veldwerk onafhankelijk van de opdrachtgever is uitgevoerd. IDDS Milieu heeft geen belangen bij de resultaten van het uitgevoerde onderzoek. IDDS Milieu en haar medewerkers zijn geen eigenaar van de locatie of in de nabije toekomst te worden waar de veldwerkzaamheden worden uitgevoerd.
- Het procescertificaat van IDDS Milieu en het hierbij behorende keurmerk zijn uitsluitend van toepassing op de activiteiten inzake monsterneming en de overdracht van de monsters, inclusief de daarbij behorende veldwerkregistratie, aan een erkend laboratorium of de opdrachtgever.

Akkoord

Ondertekening

Erkend	26-3-2024	Geregistreerde	25-3-2024
veldmedewerker		projectleider	
De formulieren zijn digitaal ondertekend. Het moment van tekenen, de data weergageven in het formulier en de			

De formulieren zijn digitaal ondertekend. Het moment van tekenen, de data weergegeven in het formulier en de verificatie van de personen die hebben getekend zijn vastgelegd in het kwaliteitssysteem van IDDS.

FV11 Bodem veldwerkformulier uitvoer

Projectnummer	A5001
Projectlocatie	A. Einsteinweg 29, Alphen aan den Rijn
Uitvoerend instantie	IDDS Milieu

Gecertificeerde veldmedewerker:

Datum	Veldmedewerker(s)	Protocol van toepassing
2-4-2024		2001

Overige medewerkers:

Assistenten	

Contact/voorinformatie/problemen:

Vraag	Ja / Nee	Toelichting
Contact gehad met adviseur of projectleider?	Ja	
Voorinformatie correct en volledig?	Ja	
Problemen opgetreden?	Nee	

Boorplan:

Vraag	Ja / Nee
Is afgeweken van het boorplan	Ja (is verwerkt in Terraindex)

Nummer pH/EC-lijst:

Is er een peilbuis geplaatst?	Nummer pH/EC-lijst:
Ja	Xp-679

Asbest:

Vraag	Ja / Nee
Is asbest aangetroffen	Nee
Zo, aantal stukjes	
Bij welk boorpunt	
Getroffen maatregelen	

Protocol:

Vraag	Ja / Nee
Is het onderzoek volgens de aangegeven	Ja
protocollen uitgevoerd?	
Indien afwijking geef toelichting.	

Opmerkingen:

Pb herplaatst	

Hierbij verklaren de erkend veldwerker en de projectleider:

- dat het onderzoek is uitgevoerd binnen de reikwijdte en conform de eisen van de BRL-SIKB 2000 en het daarbij behorende protocol 2001
- het veldwerk onafhankelijk van de opdrachtgever is uitgevoerd. IDDS Milieu heeft geen belangen bij de resultaten van het uitgevoerde onderzoek. IDDS Milieu en haar medewerkers zijn geen eigenaar van de locatie of in de nabije toekomst te worden waar de veldwerkzaamheden worden uitgevoerd.
- Het procescertificaat van IDDS Milieu en het hierbij behorende keurmerk zijn uitsluitend van toepassing op de activiteiten inzake monsterneming en de overdracht van de monsters, inclusief de daarbij behorende veldwerkregistratie, aan een erkend laboratorium of de opdrachtgever.

Ondertekening

Erkend	2-4-2024	Geregistreerde	3-4-2024
veldmedewerker		projectleider	
	landaria da Habara da Alabara	1	

De formulieren zijn digitaal ondertekend. Het moment van tekenen, de data weergegeven in het formulier en de verificatie van de personen die hebben getekend zijn vastgelegd in het kwaliteitssysteem van IDDS.

FV21 Grondwatermonstername veldwerkformulier uitvoer

Projectnummer	A5001
Projectlocatie	A. Einsteinweg 29, Alphen aan den Rijn
Uitvoerend instantie	IDDS Milieu

Gecertificeerde veldmedewerker:

Datum	Veldmedewerker(s)	Protocol van toepassing	
2-4-2024		2002	

Overige medewerkers:

Datum	Assistenten
2-4-2024	

Nummer pH/EC-lijst:

Nummer	
Xp-679	Ī

Contact/voorinformatie/problemen:

Vraag	Ja / Nee	Toelichting
Staat de peilbuis op de aangegeven plaats?	Ja	
Contact gehad met adviseur of projectleider?	Ja	
Voorinformatie correct en volledig?	Ja	
Problemen opgetreden?	Ja (toelichten)	1* pb herplaatst

Protocol:

Vraag	Ja / Nee
Is het onderzoek volgens de aangegeven	Ja
protocollen uitgevoerd?	
Indien afwijking geef toelichting.	

Opmerkingen:

7:0 hiarbayan		
Zie hierboven		
10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		

Hierbij verklaren de erkend veldwerker en de projectleider:

- dat het veldwerk onafhankelijk van de opdrachtgever is uitgevoerd.

Het onderzoek is uitgevoerd conform de eisen van de BRL-SIKB2000 en het daarbij behorende protocol 2002

Grondwatermonstername veldwerkformulier uitvoer BRL SIKB 2000 Versie 2022-06-22 Projectnummer: A5001

- het veldwerk onafhankelijk van de opdrachtgever is uitgevoerd. IDDS Milieu heeft geen belangen bij de resultaten van het uitgevoerde onderzoek. IDDS Milieu en haar medewerkers zijn geen eigenaar van de locatie of in de nabije toekomst te worden waar de veldwerkzaamheden worden uitgevoerd.
- Het procescertificaat van IDDS Milieu en het hierbij behorende keurmerk zijn uitsluitend van toepassing op de activiteiten inzake monsterneming en de overdracht van de monsters, inclusief de daarbij behorende veldwerkregistratie, aan een erkend laboratorium of de opdrachtgever.

Akkoord

Ondertekening

Erkend	2-4-2024	Geregistreerde	3-4-2024
veldmedewerker		projectleider	

De formulieren zijn digitaal ondertekend. Het moment van tekenen, de data weergegeven in het formulier en de verificatie van de personen die hebben getekend zijn vastgelegd in het kwaliteitssysteem van IDDS.

FV21 Grondwatermonstername veldwerkformulier uitvoer

Projectnummer	A5001	
Projectlocatie	A. Einsteinweg 29, Alphen aan den Rijn	
Uitvoerend instantie	IDDS Milieu	

Gecertificeerde veldmedewerker:

Datum	Veldmedewerker(s)	Protocol van toepassing	
9-4-2024		2002	

Overige medewerkers:

Datum	Assistenten
9-4-2024	

Nummer pH/EC-lijst:

Nummer	
Kr-911	1

Contact/voorinformatie/problemen:

Vraag	Ja / Nee	Toelichting
Staat de peilbuis op de aangegeven plaats?	Ja	
Contact gehad met adviseur of projectleider?	Nee	Niet nodig
	(toelichten)	
Voorinformatie correct en volledig?	Ja	
Problemen opgetreden?	Nee	

Protocol:

Vraag	Ja / Nee
Is het onderzoek volgens de aangegeven	Ja
protocollen uitgevoerd?	
Indien afwijking geef toelichting.	

Opmerkingen:

Geen		
OCCII		

Hierbij verklaren de erkend veldwerker en de projectleider:

- dat het veldwerk onafhankelijk van de opdrachtgever is uitgevoerd.
 Het onderzoek is uitgevoerd conform de eisen van de BRL-SIKB2000 en het daarbij behorende protocol 2002

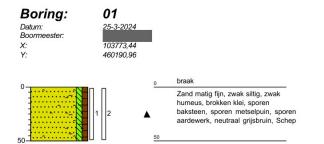
Grondwatermonstername veldwerkformulier uitvoer BRL SIKB 2000 Versie 2022-06-22 Projectnummer: A5001

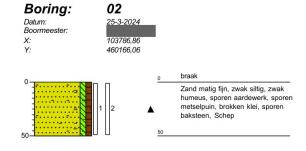
- het veldwerk onafhankelijk van de opdrachtgever is uitgevoerd. IDDS Milieu heeft geen belangen bij de resultaten van het uitgevoerde onderzoek. IDDS Milieu en haar medewerkers zijn geen eigenaar van de locatie of in de nabije toekomst te worden waar de veldwerkzaamheden worden uitgevoerd.
- Het procescertificaat van IDDS Milieu en het hierbij behorende keurmerk zijn uitsluitend van toepassing op de activiteiten inzake monsterneming en de overdracht van de monsters, inclusief de daarbij behorende veldwerkregistratie, aan een erkend laboratorium of de opdrachtgever.

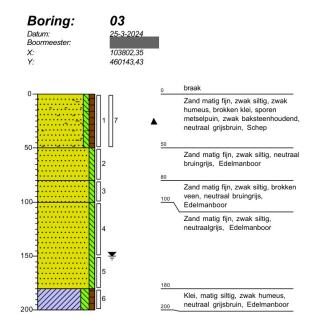
Akkoord

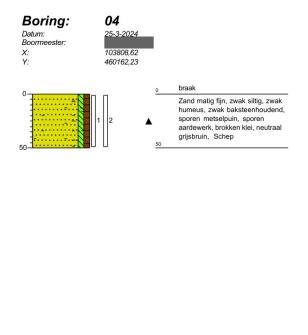
Ondertekening

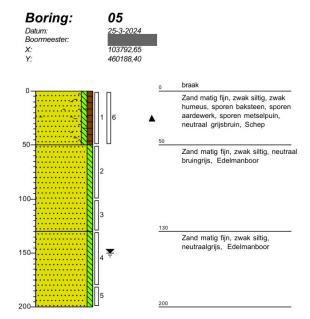
Erkend	9-4-2024	Geregistreerde	10-4-2024
veldmedewerker		projectleider	

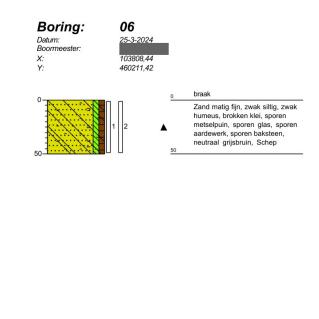

De formulieren zijn digitaal ondertekend. Het moment van tekenen, de data weergegeven in het formulier en de verificatie van de personen die hebben getekend zijn vastgelegd in het kwaliteitssysteem van IDDS.

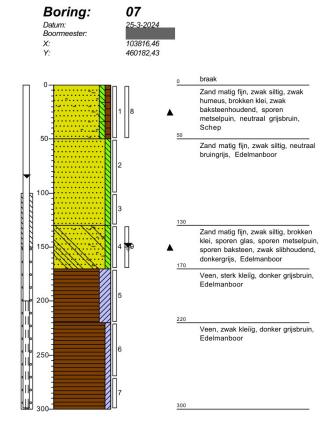


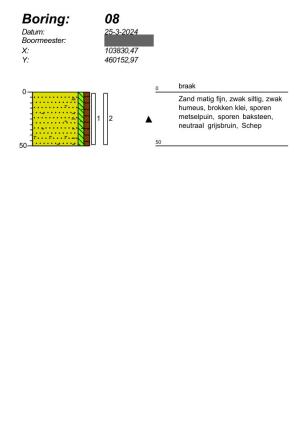


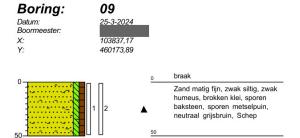

BIJLAGE 3.2

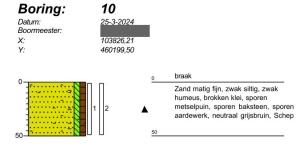

Boorstaten en legenda

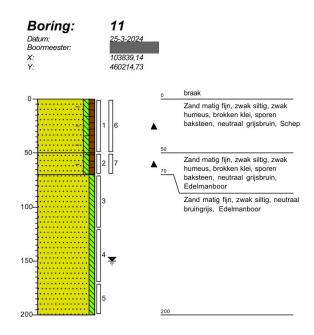


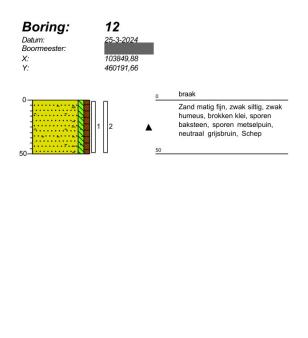


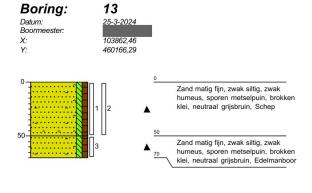


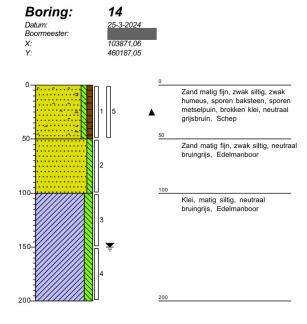


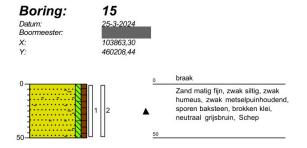


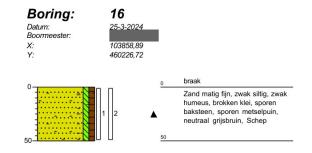


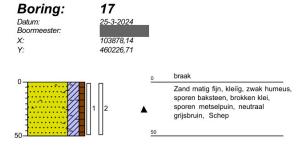


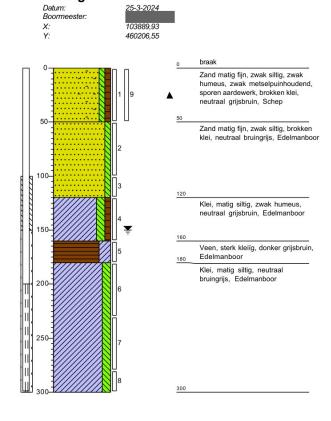


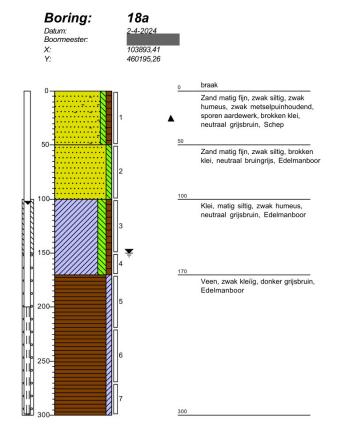


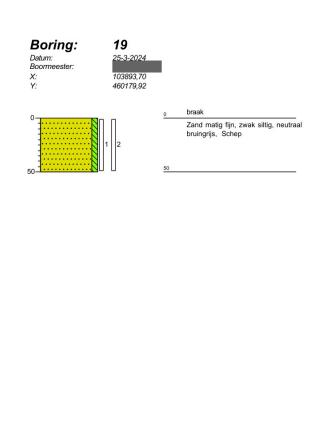












Boring:

18

Legenda (conform NEN 5104)

zand afdichting

grind afdichting

filter

bentoniet/mikoliet/klei afdichting

grind klei geur O- geen geur Grind, siltig Klei, zwak siltig zwakke geur • matige geur Grind, zwak zandig Klei, matig siltig sterke geur uiterste geur Klei, sterk siltig Grind, matig zandig olie Grind, sterk zandig Klei, uiterst siltig ☐ geen olie-water reactie zwakke olie-water reactie Grind, uiterst zandig Klei, zwak zandig - matige olie-water reactie sterke olie-water reactie Klei, matig zandig - uiterste olie-water reactie p.i.d.-waarde zand Klei, sterk zandig ₿ >0 Zand, kleiïg >1 >10 Zand, zwak siltig >100 leem >1000 Zand, matig siltig Leem, zwak zandig >10000 Zand, sterk siltig Leem, sterk zandig monsters Zand, uiterst siltig geroerd monster overige toevoegingen ongeroerd monster zwak humeus volumering veen overig Veen, mineraalarm matig humeus bijzonder bestanddeel Veen, zwak kleiïg sterk humeus Gemiddeld hoogste grondwaterstand grondwaterstand Veen, sterk kleiïg zwak grindig Gemiddeld laagste grondwaterstand slib Veen, zwak zandig matig grindig Veen, sterk zandig sterk grindig peilbuis blinde buis casing hoogste grondwaterstand gemiddelde grondwaterstand laagste grondwaterstand

BIJLAGE 4.1

Certificaten grond

IDDS Milieu B.V.

s-Gravendijckseweg 37 2201CZ NOORDWIJK ZH

Uw kenmerk : A5001-A. Einsteinweg 29 Alphen a/d Rijn

Ons kenmerk : Project 1710825
Validatieref. : 1710825_certificaat_v1
Opdrachtverificatiecode : XTAB-QBRB-AMOL-RSDZ

Bijlage(n) : 5 tabel(len) + 2 oliechromatogram(men) + 3 bijlage(n)

Amsterdam, 29 maart 2024

Hierbij zend ik u de resultaten van het laboratoriumonderzoek dat op uw verzoek is uitgevoerd in de door u aangeboden monsters.

De resultaten hebben uitsluitend betrekking op de monsters, zoals die door u voor analyse ter beschikking werden gesteld.

Het onderzoek is, met uitzondering van eventueel uitbesteed onderzoek, uitgevoerd door Eurofins Omegam. Informatie omtrent de gebruikte analysemethode(n) kunt u vinden in ons klantenportaal Mijn Lab onder "Info en Docs".

Ik wijs u erop dat het analysecertificaat alleen in zijn geheel mag worden gereproduceerd. Ik vertrouw erop uw opdracht volledig en naar tevredenheid te hebben uitgevoerd. Heeft u naar aanleiding van deze rapportage nog vragen, dan verzoek ik u contact op te nemen met onze klantenservice.

Hoogachtend, namens Eurofins Omegam,

Manager productie

Op dit certificaat zijn onze algemene voorwaarden van toepassing. Dit analysecertificaat mag niet anders dan in zijn geheel worden gereproduceerd.

Eurofins Omegam B.V. H.J.E. Wenckebachweg 120 NL-1114 AD Amsterdam-Duivendrecht Nederland T +31-(0)20-597 66 80

@eurofins.com
www.eurofins.nl

Ref.: 1710825 certificaat v1

ANALYS	ECERTIFIC	AAT

Projectcode 1710825

Uw project omschrijving A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever IDDS Milieu B.V.

Uw Monsterreferenties

8176433 = MM01 02 (0-50) 03 (0-50) 05 (0-50) 06 (0-50) 07 (0-50) 08 (0-50)

8176434 = MM02 09 (0-50) 10 (0-50) 12 (0-50) 13 (0-50) 14 (0-50) 16 (0-50) 18 (0-50)

Opgegeven bemonsteringsdatum	:	25/03/2024	25/03/2024	
Ontvangstdatum opdracht	:	25/03/2024	25/03/2024	
Startdatum	:	25/03/2024	25/03/2024	
Monstercode	:	8176433	8176434	
Uw Matrix	i	Grond	Grond	
Monstervoorbewerking				
S AS3000 (steekmonster)		uitgevoerd	uitgevoerd	
S gewicht artefact	g	n.v.t.	n.v.t.	
S soort artefact		n.v.t.	n.v.t.	
S voorbewerking AS3000		uitgevoerd	uitgevoerd	
Algemeen onderzoek - fysisch				
S droge stof	%	85,9	84,4	
S organische stof (gec. voor lutum)	% (m/m ds)	2,7	3,0	
S lutumgehalte (pipetmethode)	% (m/m ds)	9,2	4,7	
Anorganische parameters - metale	n			
S barium (Ba)	mg/kg ds	41	42	
S cadmium (Cd)	mg/kg ds	< 0,20	< 0,20	
S kobalt (Co)	mg/kg ds	3,3	3,3	
S koper (Cu)	mg/kg ds	6,6	8,0	
S kwik (Hg) (niet vluchtig)	mg/kg ds	0,09	0,07	
S lood (Pb)	mg/kg ds	33	44	
S molybdeen (Mo)	mg/kg ds	< 1,5	< 1,5	
S nikkel (Ni)	mg/kg ds	10 [°]	10	
S zink (Zn)	mg/kg ds	38	53	
Organische parameters - niet aron	natisch			
S minerale olie (florisil clean-up)	mg/kg ds	< 35	< 35	
Organische parameters - aromatis	ch			
Polycyclische koolwaterstoffen:				
S naftaleen	mg/kg ds	< 0,05	< 0,05	
S fenantreen	mg/kg ds	0,05	0,06	
S antraceen	mg/kg ds	< 0,05	< 0,05	
S fluoranteen	mg/kg ds	0,15	0,15	
S benzo(a)antraceen	mg/kg ds	0,13	0,12	
S chryseen	mg/kg ds	0,17	0,16	
S benzo(k)fluoranteen	mg/kg ds	0,11	0,11	
S benzo(a)pyreen	mg/kg ds	0,13	0,16	
S benzo(ghi)peryleen	mg/kg ds	0,07	0,10	
S indeno(1,2,3-cd)pyreen	mg/kg ds	0,07	0,08	
S som PAK (10)	mg/kg ds	0,95	1,0	
Organische parameters - gehaloge Polychloorbifenylen:	neeru			
S PCB -28	mg/kg ds	< 0,001	< 0,001	
S PCB -52	mg/kg ds	< 0,001	< 0,001	
S PCB-101	mg/kg ds	< 0,001	< 0,001	
S PCB -118	mg/kg ds	< 0,001	< 0,001	
S PCB -138	mg/kg ds	< 0,001	< 0,001	
S PCB -153	mg/kg ds	< 0,001	< 0,001	
S PCB -180	mg/kg ds	< 0,001	< 0,001	
S som PCBs (7)	mg/kg ds	0,005	0,005	
O 30111 F ODS (7)	mg/kg us	0,005	0,005	

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.

- De met een 'Q' gemerkte analyses zijn door RvA geaccrediteerd (registratienummer L086).

- De met een 'S' gemerkte analyses zijn door RvA geaccrediteerd (L086) en op basis van het schema AS 3000 erkend.

Opgegeven bemonsteringsdatum:

Tabel 2 van 5

ANALYSECERTIFICAAT

25/03/2024

25/03/2024

Projectcode 1710825

Uw project omschrijving A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever IDDS Milieu B.V.

Uw Monsterreferenties

8176433 = MM01 02 (0-50) 03 (0-50) 05 (0-50) 06 (0-50) 07 (0-50) 08 (0-50)

8176434 = MM02 09 (0-50) 10 (0-50) 12 (0-50) 13 (0-50) 14 (0-50) 16 (0-50) 18 (0-50)

	Ontvangstdatum opdracht Startdatum Monstercode Uw Matrix		25/03/2024 25/03/2024 8176433 Grond	25/03/2024 25/03/2024 8176434 Grond
	Organische parameters - per- en p	olyfluoralkylstoffe	n (PFAS)	
	Perfluorcarbonzuren:			
	Q PFBA	μg/kg ds	0,1	0,1
	Q PFPeA	μg/kg ds	< 0,1	< 0,1
	Q PFHxA	μg/kg ds	< 0,1	< 0,1
	Q PFHpA	μg/kg ds	< 0,1	< 0,1
	Q PFOA lineair	μg/kg ds	1,0	0,4
	Q PFOA vertakt	μg/kg ds	< 0,1	< 0,1
	Q PFNA	μg/kg ds	< 0,1	< 0,1
	Q PFDA Q PFUnDA	μg/kg ds μg/kg ds	< 0,1 < 0,1	< 0,1 < 0,1
	Q PFDoDA	μg/kg ds μg/kg ds	< 0,1	< 0,1 < 0,1
	Q PFTrDA	μg/kg ds μg/kg ds	< 0,1	< 0,1
	Q PFTeDA	μg/kg ds μg/kg ds	< 0,1	< 0,1
	Q PFHxDA	μg/kg ds	< 0,1	< 0,1
	Q PFODA	μg/kg ds	< 0,1	< 0,1
	Perfluorsulfonzuren: Q PFBS Q PFPeS Q PFHxS	μg/kg ds μg/kg ds μg/kg ds	< 0,1 < 0,1 < 0,1	< 0,1 < 0,1 < 0.1
	Q PFHpS	μg/kg ds	< 0,1	< 0,1
	Q PFOS lineair	μg/kg ds	0,5	0,5
1	Q PFOS vertakt	μg/kg ds	0,1	0,2
	Q PFDS	μg/kg ds	< 0,1	< 0,1
	Perfluorverbindingen - precursors:			
	Q 4:2 FTS	μg/kg ds	< 0,1	< 0,1
3	Q 6:2 FTS	μg/kg ds	< 0,1	< 0,1
	Q 8:2 FTS	μg/kg ds	< 0,1	< 0,1
	Q 10:2 FTS	μg/kg ds	< 0,1	< 0,1
	Perfluorverbindingen - overig:		0.4	0.1
	Q MeFOSAA Q MeFOSA	μg/kg ds μg/kg ds	< 0,1 < 0,1	< 0,1 < 0,1
	Q EtFOSAA	μg/kg ds μg/kg ds	< 0,1	< 0,1
	Q PFOSA	μg/kg ds μg/kg ds	< 0,1	< 0,1
	Q 8:2 DiPAP	μg/kg ds μg/kg ds	< 0,1	< 0,1
			, -	
	som PFOA som PFOS	μg/kg ds μg/kg ds	1,1 0,6	0,5 0,7

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.

- De met een 'Q' gemerkte analyses zijn door RvA geaccrediteerd (registratienummer L086).

- De met een 'S' gemerkte analyses zijn door RvA geaccrediteerd (L086) en op basis van het schema AS 3000 erkend.

Projectcode 1710825

Uw project omschrijving A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever IDDS Milieu B.V.

Uw Monsterreferenties

8176435 = MM03 11 (0-50) 17 (0-50)

8176436 = M04 07 (130-170)

8176437 = MM05 03 (100-150) 05 (130-180) 07 (50-100) 11 (70-120) 14 (50-100) 18 (50-100)

81/6437 = MM05 03 (100-150) 09	5 (130-180) 07 (8	50-100) 11 (70-120) 1	4 (50-100) 18 (50-100)	
Opgegeven bemonsteringsdatu Ontvangstdatum opdracht Startdatum Monstercode Uw Matrix	im : : : :	25/03/2024 25/03/2024 25/03/2024 8176435 Grond	25/03/2024 25/03/2024 25/03/2024 8176436 Grond	25/03/2024 25/03/2024 25/03/2024 8176437 Grond
Monstervoorbewerking S AS3000 (steekmonster) S gewicht artefact S soort artefact S voorbewerking AS3000	g	uitgevoerd n.v.t. n.v.t. uitgevoerd	uitgevoerd n.v.t. n.v.t. uitgevoerd	uitgevoerd n.v.t. n.v.t. uitgevoerd
Algemeen onderzoek - fysisch S droge stof S organische stof (gec. voor lutu S lutumgehalte (pipetmethode)	% Im) % (m/m ds) % (m/m ds)	86,0 2,3 6,6	72,3 5,6 7,6	85,3 0,6 1,1
Anorganische parameters - met S barium (Ba) S cadmium (Cd) S kobalt (Co) S koper (Cu) S kwik (Hg) (niet vluchtig) S lood (Pb) S molybdeen (Mo) S nikkel (Ni) S zink (Zn)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds	42 < 0,20 3,6 8,8 0,07 30 < 1,5 11 57	74 < 0,20 3,9 7,6 0,10 18 < 1,5 14 27	< 20 < 0,20 < 3,0 < 5,0 < 0,05 < 10 < 1,5 7 < 20
Organische parameters - niet an S minerale olie (florisil clean-up)		< 35	96	< 35
Organische parameters - aroma Polycyclische koolwaterstoffen: S naftaleen S fenantreen S antraceen S fluoranteen S benzo(a)antraceen S chryseen S benzo(k)fluoranteen S benzo(a)pyreen S benzo(ghi)peryleen S indeno(1,2,3-cd)pyreen S som PAK (10)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds	< 0,05 < 0,05 < 0,05 0,07 < 0,05 0,07 < 0,05 0,07 0,06 0,07	< 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05	< 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05
Organische parameters - gehale Polychloorbifenylen: S PCB -28 S PCB -52		< 0,001 < 0,001	< 0,001 < 0,001	< 0,001 < 0,001
S PCB -52 S PCB -101 S PCB -118 S PCB -138 S PCB -153 S PCB -180	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds	< 0,001 < 0,001 < 0,002 < 0,001 < 0,001	< 0,001 < 0,001 < 0,001 < 0,001 < 0,001	< 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001
S som PCBs (7)	mg/kg ds	0,006	0,005	0,005

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.

- De met een 'Q' gemerkte analyses zijn door RvA geaccrediteerd (registratienummer L086).

- De met een 'S' gemerkte analyses zijn door RvA geaccrediteerd (L086) en op basis van het schema AS 3000 erkend.

Projectcode 1710825

Uw project omschrijving A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever IDDS Milieu B.V.

Uw Monsterreferenties

8176438 = MM06 03 (180-200) 14 (100-150) 18 (120-160)

Opgegeven bemonsteringsdatum	:	25/03/2024
Ontvangstdatum opdracht	:	25/03/2024
Startdatum	:	25/03/2024
Monstercode	:	8176438
Uw Matrix	•	Grand

Mone	tarvaa	rbewei	rkina
WICHS		DEWE	KILIU

S	AS3000 (steekmonster)		uitgevoerd
S	gewicht artefact	g	n.v.t.
S	soort artefact		n.v.t.
S	voorbewerking AS3000		uitaevoerd

Algemeen onderzoek - fysisch

S	droge stof	%	55,3
S	organische stof (gec. voor lutum)	% (m/m ds)	10,4
S	lutumgehalte (pipetmethode)	% (m/m ds)	23,9

Anorganische parameters - metalen

~,	iorganisone parameters - in	Claicii	
S	barium (Ba)	mg/kg ds	170
S	cadmium (Cd)	mg/kg ds	0,28
S	kobalt (Co)	mg/kg ds	10
S	koper (Cu)	mg/kg ds	19
S	kwik (Hg) (niet vluchtig)	mg/kg ds	0,06
S	lood (Pb)	mg/kg ds	23
S	molybdeen (Mo)	mg/kg ds	< 1,5
S	nikkel (Ni)	mg/kg ds	42
S	zink (Zn)	mg/kg ds	77

Organische parameters - niet aromatisch

96 S minerale olie (florisil clean-up)

Organische parameters - aromatisch

Pc	lycyclische koolwaterstoffen:		
S	naftaleen	mg/kg ds	< 0,05
S	fenantreen	mg/kg ds	< 0,05
S	antraceen	mg/kg ds	< 0,05
S	fluoranteen	mg/kg ds	0,08
S	benzo(a)antraceen	mg/kg ds	0,06
S	chryseen	mg/kg ds	0,09
S	benzo(k)fluoranteen	mg/kg ds	0,06
S	benzo(a)pyreen	mg/kg ds	0,08
S	benzo(ghi)peryleen	mg/kg ds	< 0,05
S	indeno(1,2,3-cd)pyreen	mg/kg ds	< 0,05
S	som PAK (10)	mg/kg ds	0,54

Organische parameters - gehalogeneerd

Polychloorbifenylen.	Polve	chloor	bifenv	len:
----------------------	-------	--------	--------	------

S	PCB -28	mg/kg ds	< 0,001
S	PCB -52	mg/kg ds	< 0,001
S	PCB -101	mg/kg ds	< 0,001
S	PCB -118	mg/kg ds	< 0,001
S	PCB -138	mg/kg ds	< 0,001
S	PCB -153	mg/kg ds	< 0,001
S	PCB -180	mg/kg ds	< 0,001
S	som PCBs (7)	mg/kg ds	0,005

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.

- De met een 'Q' gemerkte analyses zijn door RvA geaccrediteerd (registratienummer L086).

- De met een 'S' gemerkte analyses zijn door RvA geaccrediteerd (L086) en op basis van het schema AS 3000 erkend.

Projectcode 1710825

Uw project omschrijving A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever IDDS Milieu B.V.

Opmerkingen m.b.t. analyses

Opmerking(en) algemeen

De volgende informatie is indien van toepassing verstrekt door de opdrachtgever:

Project omschrijving, Monsterreferentie(s), Opgegeven bemonsteringsdatum, Matrix, Monsterdiepte, Potnr (Barcode), Veldgegevens, Veldwaarnemingen en Bemonsteringsdata. De opgegeven bemonsteringsdatum kan van invloed zijn op de geldigheid van de resultaten.

Kwantificering van vertakte PFOS/PFOA is gebaseerd op DIN 38414-14.

Organische stof gehalte (gecorrigeerd voor lutum en vrij ijzer in de vorm van Fe2O3)

Het organische stofgehalte is gecorrigeerd voor het in het analysecertificaat gerapporteerde lutumgehalte. Indien het lutumgehalte niet is gerapporteerd is de correctie uitgevoerd met een lutumgehalte van 5,4% (gemiddeld lutumgehalte Nederlandse bodem, AS3010/AS3210, prestatieblad organische stofgehalte in grond/waterbodem). Indien het vrij ijzergehalte is bepaald en groter is dan 5 % m/m, is bij de berekening van het organische stof gecorrigeerd voor dat gehalte aan vrij ijzer.

Sommatie van concentraties voor groepsparameters

De sommatie is uitgevoerd volgens AS3000 paragraaf 2.5.2 en bijlage 3.

Sommatie van concentraties voor groepsparameters

De sommatie is uitgevoerd volgens AP04-A paragraaf A 1.9 Rapportage (versie 8).

Uw referentie MM03 11 (0-50) 17 (0-50)

Monstercode 8176435

Opmerking(en) bij resultaten:

PCB -138: Bij deze gaschromatografische analyse valt PCB 138 samen met PCB 163.

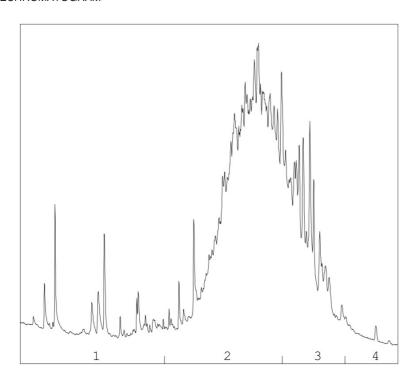
Opdrachtverificatiecode: XTAB-QBRB-AMOL-RSDZ

Ref.: 1710825 certificaat v1

Ref.: 1710825_certificaat_v1

OLIE-ONDERZOEK

Monstercode : 8176436


Uw project : A5001-A. Einsteinweg 29 Alphen a/d Rijn

Uw project omschrijving Uw referentie

: M04 07 (130-170)

Methode : minerale olie (florisil clean-up)

OLIECHROMATOGRAM

oliefractieverdeling

OLIEFRACTIEVERDELING

1)	fractie > C10 - C19	6 %
2)	fractie C19 - C29	65 %
3)	fractie C29 - C35	26 %
4)	fractie C35 -< C40	3 %

minerale olie gehalte: 96 mg/kg ds

Minerale olie

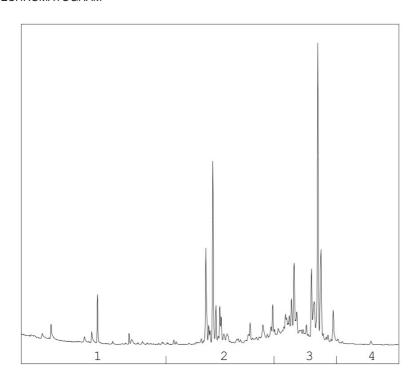
Interpretatie: raadpleeg voor de typering van de oliesoort de OMEGAM oliebibliotheek.

De hoogte van de signalen is geen maat voor de concentratie van de olie in het monster. (Het chromatogram heeft een variabele schaalindeling)

Bij een minerale olie gehalte kleiner dan de rapportagegrens worden geen oliefracties weergegeven.

OLIE-ONDERZOEK

Monstercode : 8176438


Uw project : A5001-A. Einsteinweg 29 Alphen a/d Rijn

omschrijving Uw referentie

: MM06 03 (180-200) 14 (100-150) 18 (120-160)

Methode : minerale olie (florisil clean-up)

OLIECHROMATOGRAM

oliefractieverdeling

OLIEFRACTIEVERDELING

minerale olie gehalte: 96 mg/kg ds

Minerale olie

Interpretatie: raadpleeg voor de typering van de oliesoort de OMEGAM oliebibliotheek.

De hoogte van de signalen is geen maat voor de concentratie van de olie in het monster. (Het chromatogram heeft een variabele schaalindeling)

Bij een minerale olie gehalte kleiner dan de rapportagegrens worden geen oliefracties weergegeven.

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.

1710825

Projectcode
Uw project omschrijving
Opdrachtgever A5001-A. Einsteinweg 29 Alphen a/d Rijn

IDDS Milieu B.V.

Barcodeschema's

Monstercode	Uw referentie	uw monsterref.	uw diepte	uw barcode
8176433	MM01 02 (0-50) 03 (0-50) 05 (0-50) 06 (0-50) 07 (0-50) 08 (0-50)	02 03 05 06 07 08	0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5	4573407AA 4573399AA 4573397AA 4573361AA 4573377AA 4573370AA
8176434	MM02 09 (0-50) 10 (0-50) 12 (0-50) 13 (0-50) 14 (0-50) 16 (0-50) 18 (0-50)	09 10 12 13 14 16	0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5	4573371AA 4573365AA 4573400AA 4573392AA 4573381AA 4573364AA 4573380AA
8176435	MM03 11 (0-50) 17 (0-50)	11 17	0-0.5 0-0.5	4573376AA 4573394AA
8176436	M04 07 (130-170)	07	1.3-1.7	4573369AA
8176437	MM05 03 (100-150) 05 (130-180) 07 (50-100) 11 (70-120) 14 (50-100) 18 (50-100)	03 05 07 11 14	1-1.5 1.3-1.8 0.5-1 0.7-1.2 0.5-1	4573404AA 4573389AA 4573374AA 4573379AA 4573387AA 4573382AA
8176438	MM06 03 (180-200) 14 (100-150) 18 (120-160)	03 14 18	1.8-2 1-1.5 1.2-1.6	4573412AA 4573385AA 4573384AA

Bijlage 2 van 3

ANALYSECERTIFICAAT

1710825

Projectcode Uw project omschrijving Opdrachtgever A5001-A. Einsteinweg 29 Alphen a/d Rijn

IDDS Milieu B.V.

Bijlage Omschrijvingen PFAS

PFAS component	Volledige naam PFAS component
10:2 FTS	10:2 FTS (10:2 fluortelomeer sulfonzuur)
4:2 FTS	4:2 FTS (4:2 fluortelomeer sulfonzuur)
6:2 FTS	6:2 FTS (6:2 fluortelomeer sulfonzuur)
8:2 DiPAP	8:2 DiPAP (8:2 fluortelomeer fosfaat diester)
8:2 FTS	8:2 FTS (8:2 fluortelomeer sulfonzuur)
EtFOSAA	EtFOSAA (n-ethylperfluoroctaansulfonamide acetaat)
MeFOSA	MeFOSA (n-methylperfluoroctaansulfonamide)
MeFOSAA	MeFOSAA (n-methylperfluoroctaansulfonamide acetaat)
PFBA	PFBA (perfluorbutaanzuur)
PFBS	PFBS (perfluorbutaansulfonzuur)
PFDA	PFDA (perfluordecaanzuur)
PFDoDA	PFDoDA (perfluordodecaanzuur)
PFDS	PFDS (perfluordecaansulfonzuur)
PFHpA PFHpS	PFHpA (perfluor-n-heptaanzuur)
PFHxA	PFHpS (perfluorheptaansulfonzuur) PFHxA (perfluorhexaanzuur)
PFHxDA	PFHxDA (perfluorhexadecaanzuur)
PFHxS	PFHxS (perfluorhexadecdalizadi)
PFNA	PFNA (perfluornonaanzuur)
PFOA lineair	PFOA lineair (perfluoroctaanzuur)
PFOA vertakt	PFOA vertakt (perfluoroctaanzuur)
PFODA	PFODA (perfluoroctadecaanzuur)
PFOS lineair	PFOS lineair (perfluoroctaansulfonzuur)
PFOS vertakt	PFOS vertakt (perfluoroctaansulfonzuur)
PFOSA	PFOSA (perfluoroctaansulfonamide)
PFPeA	PFPeA (perfluorpentaanzuur)
PFPeS	PFPeS (perfluor-n-pentaansulfonzuur)
PFTeDA	PFTeDA (perfluor-n-tetradecaanzuur)
PFTrDA	PFTrDA (perfluortridecaanzuur)
PFUnDA	PFUnDA (perfluorundecaanzuur)

Opdrachtverificatiecode: XTAB-QBRB-AMOL-RSDZ

Ref.: 1710825_certificaat_v1

Bijlage 3 van 3

ANALYSECERTIFICAAT

Projectcode : 1710825

Uw project omschrijving : A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever : IDDS Milieu B.V.

Analysemethoden Grond (AS3000)

AS3000

Molybdeen (Mo)

Nikkel (Ni)

Omegam BV.

In dit analysecertificaat zijn de met 'S' gemerkte analyses uitgevoerd volgens de analysemethoden beschreven in het "Accreditatieschema Laboratoriumanalyses voor grond-, waterbodem- en grondwateronderzoek (AS SIKB 3000)". Het laboratoriumonderzoek is uitgevoerd volgens de onderstaande analysemethoden. Deze analyses zijn vastgelegd in het geldende accreditatie-certificaat met bijbehorende verrichtingenlijst L086 van Eurofins Omegam BV.

voorbewerking AS3000 : Conform AS3000 en NEN-EN 16179
Droge stof : Conform AS3010 prestatieblad 2

Organische stof (gec. voor lutum) : Conform AS3010 prestatieblad 3 en gelijkwaardig aan NEN 5754 Lutumgehalte (pipetmethode) : Conform AS3010 prestatieblad 4; gelijkwaardig aan NEN 5753

Barium (Ba) : Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Cadmium (Cd) : Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Kobalt (Co) : Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Koper (Cu) : Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Kwik (Hg) (niet vluchtig) : Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Lood (Pb) : Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie conform NEN 6961

Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961
Zink (Zn) : Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie conform NEN 6961

Minerale olie (florisil clean-up)

PAKs

Conform AS3010 prestatieblad 7

Conform AS3010 prestatieblad 6

Conform AS3010 prestatieblad 6

Conform AS3010 prestatieblad 8

In dit analysecertificaat zijn de met 'Q' gemerkte analyses uitgevoerd volgens de onderstaande analysemethoden. Deze analyses zijn vastgelegd in het geldende accreditatie-certificaat met bijbehorende verrichtingenlijst L086 van Eurofins

PFAS : Eigen methode

Opdrachtverificatiecode: XTAB-QBRB-AMOL-RSDZ

Ref.: 1710825_certificaat_v1

BIJLAGE 4.2

Certificaten grondwater

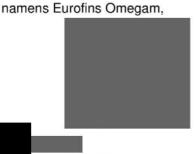
IDDS Milieu B.V.

s-Gravendijckseweg 37 2201CZ NOORDWIJK ZH

Uw kenmerk : A5001-A. Einsteinweg 29 Alphen a/d Rijn

Ons kenmerk : Project 1714610
Validatieref. : 1714610_certificaat_v1
Opdrachtverificatiecode: WKTL-YFQR-PYCX-UKVX
Bijlage(n) : 2 tabel(len) + 2 bijlage(n)

Amsterdam, 8 april 2024


Hierbij zend ik u de resultaten van het laboratoriumonderzoek dat op uw verzoek is uitgevoerd in de door u aangeboden monsters.

De resultaten hebben uitsluitend betrekking op de monsters, zoals die door u voor analyse ter beschikking werden gesteld.

Het onderzoek is, met uitzondering van eventueel uitbesteed onderzoek, uitgevoerd door Eurofins Omegam. Informatie omtrent de gebruikte analysemethode(n) kunt u vinden in ons klantenportaal Mijn Lab onder "Info en Docs".

Ik wijs u erop dat het analysecertificaat alleen in zijn geheel mag worden gereproduceerd. Ik vertrouw erop uw opdracht volledig en naar tevredenheid te hebben uitgevoerd. Heeft u naar aanleiding van deze rapportage nog vragen, dan verzoek ik u contact op te nemen met onze klantenservice.

Hoogachtend,

Manager productie

Op dit certificaat zijn onze algemene voorwaarden van toepassing. Dit analysecertificaat mag niet anders dan in zijn geheel worden gereproduceerd.

1714610

Projectcode Uw project omschrijving A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever IDDS Milieu B.V.

Uw Monsterreferenties 8187089 = 07-1-1 07 (200-300)

Opgegeven bemonsteringsdatum Ontvangstdatum opdracht Startdatum Monstercode Uw Matrix	:	02/04/2024 02/04/2024 02/04/2024 8187089 Grondwater	
Anorganische parameters - metale	n		
Metalen ICP-MS (opgelost):	/1	150	
S barium (Ba)	μg/l	150	
S cadmium (Cd) S kobalt (Co)	μg/l	< 0,2	
	μg/l	4,1	
	μg/l	2,7	
S Kwik (Hg) (niet vluchtig) S lood (Pb)	μg/l	< 0,05 < 2	
	μg/l		
S molybdeen (Mo) S nikkel (Ni)	μg/l	3,6 10	
S zink (Zn)	μg/l μg/l	11	
Organische parameters - niet aron S minerale olie (florisil clean-up)	natisch μg/l	< 50	
Organische parameters - aromatis Vluchtige aromaten:	CII		
S benzeen	μg/l	< 0,2	
S ethylbenzeen	μg/l	< 0,2	
S naftaleen	μg/l	< 0,02	
S o-xyleen	μg/l	< 0,1	
S styreen	μg/l	< 0,2	
S tolueen	μg/l	< 0,2	
S xyleen (som m+p)	μg/l	< 0,2	
S som xylenen	μg/l	0,2	
Organische parameters - gehaloge	neerd		
Vluchtige chlooralifaten:			
S 1,1,1-trichloorethaan	μg/l	< 0,1	
S 1,1,2-trichloorethaan	μg/l	< 0,1	
S 1,1-dichloorethaan	μg/l	< 0,2	
S 1,1-dichlooretheen	μg/l	< 0,1	
S 1,1-dichloorpropaan	μg/l	< 0,2	
S 1,2-dichloorethaan	μg/l	< 0,2	
S 1,2-dichloorpropaan	μg/l	< 0,2	
S 1,3-dichloorpropaan	μg/l	< 0,2	
S cis-1,2-dichlooretheen	μg/l	< 0,1	
S dichloormethaan	μg/l	< 0,2	
S monochlooretheen (vinylchloride)	μg/l	< 0,2	
S tetrachlooretheen	μg/l	< 0,1	
S tetrachloormethaan	μg/l	< 0,1	
S trans-1,2-dichlooretheen	μg/l	< 0,1	
S trichlooretheen	μg/l	< 0,2	
S trichloormethaan	μg/l	< 0,2	
S som C+T dichlooretheen	μg/l	0,1	
S som dichloorpropanen	μg/l	0,4	
Vluchtige gehalogeneerde alifaten - d			
S tribroommethaan (bromoform)	μg/l	< 0,2	

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.

- De met een 'S' gemerkte analyses zijn door RvA geaccrediteerd (L086) en op basis van het schema AS 3000 erkend.

Opdrachtverificatiecode: WKTL-YFQR-PYCX-UKVX

Projectcode 1714610

Uw project omschrijving A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever IDDS Milieu B.V.

Opmerkingen m.b.t. analyses

Opmerking(en) algemeen

De volgende informatie is indien van toepassing verstrekt door de opdrachtgever: Project omschrijving, Monsterreferentie(s), Opgegeven bemonsteringsdatum, Matrix, Monsterdiepte, Potnr (Barcode), Veldgegevens, Veldwaarnemingen en Bemonsteringsdata. De opgegeven bemonsteringsdatum kan van invloed zijn op de geldigheid van de resultaten.

Sommatie van concentraties voor groepsparameters

De sommatie is uitgevoerd volgens AS3000 paragraaf 2.5.2 en bijlage 3.

Opdrachtverificatiecode: WKTL-YFQR-PYCX-UKVX

Bijlage 1 van 2

ANALYSECERTIFICAAT

1714610

Projectcode Uw project omschrijving Opdrachtgever A5001-A. Einsteinweg 29 Alphen a/d Rijn

IDDS Milieu B.V.

Barcodeschema's

Monstercode	e Uw referentie	uw monsterref.	uw diepte	uw barcode
8187089	07-1-1 07 (200-300)	07 07	2-3 2-3	0480445YA 0429444MM

Opdrachtverificatiecode: WKTL-YFQR-PYCX-UKVX

Bijlage 2 van 2

ANALYSECERTIFICAAT

Projectcode : 1714610

Uw project omschrijving : A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever : IDDS Milieu B.V.

Analysemethoden Grondwater (AS3000)

AS3000

In dit analysecertificaat zijn de met 'S' gemerkte analyses uitgevoerd volgens de analysemethoden beschreven in het "Accreditatieschema Laboratoriumanalyses voor grond-, waterbodem- en grondwateronderzoek (AS SIKB 3000)". Het laboratoriumonderzoek is uitgevoerd volgens de onderstaande analysemethoden. Deze analyses zijn vastgelegd in het geldende accreditatie-certificaat met bijbehorende verrichtingenlijst L086 van Eurofins Omegam BV.

Barium (Ba) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Cadmium (Cd) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Kobalt (Co) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Koper (Cu) Kwik (Hg) (niet vluchtig) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Lood (Pb) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Molybdeen (Mo) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Nikkel (Ni) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Zink (Zn) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2

Minerale olie (florisil clean-up)
Aromaten (BTEXXN)
Styreen
Chlooralifaten
Chlooratheen (vinylchloride)
1,1-Dichlooretheen
Tribroommethaan

Conform AS3110 prestatieblad 1
Conform AS3130 prestatieblad 1

Opdrachtverificatiecode: WKTL-YFQR-PYCX-UKVX

IDDS Milieu B.V.

s-Gravendijckseweg 37 2201CZ NOORDWIJK ZH

Uw kenmerk : A5001-A. Einsteinweg 29 Alphen a/d Rijn

Ons kenmerk : Project 1718343
Validatieref. : 1718343_certificaat_v1
Opdrachtverificatiecode: QPEV-TTUY-BBUW-ZAFP
Bijlage(n) : 2 tabel(len) + 2 bijlage(n)

Amsterdam, 12 april 2024

Hierbij zend ik u de resultaten van het laboratoriumonderzoek dat op uw verzoek is uitgevoerd in de door u aangeboden monsters.

De resultaten hebben uitsluitend betrekking op de monsters, zoals die door u voor analyse ter beschikking werden gesteld.

Het onderzoek is, met uitzondering van eventueel uitbesteed onderzoek, uitgevoerd door Eurofins Omegam. Informatie omtrent de gebruikte analysemethode(n) kunt u vinden in ons klantenportaal Mijn Lab onder "Info en Docs".

Ik wijs u erop dat het analysecertificaat alleen in zijn geheel mag worden gereproduceerd. Ik vertrouw erop uw opdracht volledig en naar tevredenheid te hebben uitgevoerd. Heeft u naar aanleiding van deze rapportage nog vragen, dan verzoek ik u contact op te nemen met onze klantenservice.

Hoogachtend, namens Eurofins Omegam,

Manager productie

Op dit certificaat zijn onze algemene voorwaarden van toepassing. Dit analysecertificaat mag niet anders dan in zijn geheel worden gereproduceerd.

Ref.: 1718343_certificaat_v1

Tabel 1 van 2

ANALYSECERTIFICAAT

1718343

Projectcode Uw project omschrijving Opdrachtgever A5001-A. Einsteinweg 29 Alphen a/d Rijn

IDDS Milieu B.V.

Uw Monsterreferenties 8197166 = 18a-1-1 18a (200-300)

Opgegeven bemonsteringsdatum	:	09/04/2024
Ontvangstdatum opdracht	:	09/04/2024
Startdatum	:	09/04/2024
Monstercode	:	8197166
Uw Matrix	:	Grondwater
Anorganische parameters - metale	en	
Metalen ICP-MS (opgelost):		
S barium (Ba)	μg/l	340
S cadmium (Cd)	μg/l	< 0,2
S kobalt (Co)	μg/l	3,2
S koper (Cu)	μg/l	< 2
S Kwik (Hg) (niet vluchtig) S lood (Pb)	μg/l	< 0,05 < 2
S molybdeen (Mo)	μg/l	< 2
S nikkel (Ni)	μg/l μg/l	< 2 6,5
S zink (Zn)	μg/l	20
5 Ziiik (Zii)	μ9/1	
Organische parameters - niet aron		
S minerale olie (florisil clean-up)	μg/l	< 50
Organische parameters - aromatis	ch	
Vluchtige aromaten:		
S benzeen	μg/l	< 0,2
S ethylbenzeen	μg/l	< 0,2
S naftaleen	μg/l	< 0,02
S o-xyleen	μg/l	< 0,1
S styreen	μg/l	< 0,2
S tolueen	μg/l	< 0,2
S xyleen (som m+p)	μg/l	< 0,2
S som xylenen	μg/l	0,2
Organische parameters - gehaloge	eneerd	
Vluchtige chlooralifaten:		
S 1,1,1-trichloorethaan	μg/l	< 0,1
S 1,1,2-trichloorethaan	μg/l	< 0,1
S 1,1-dichloorethaan	μg/l	< 0,2
S 1,1-dichlooretheen	μg/l	< 0,1
S 1,1-dichloorpropaan	μg/l	< 0,2
S 1,2-dichloorethaan	μg/l	< 0,2
S 1,2-dichloorpropaan	μg/l	< 0,2
S 1,3-dichloorpropaan	μg/l	< 0,2
S cis-1,2-dichlooretheen	μg/l	< 0,1
S dichloormethaan S monochlooretheen (vinylchloride)	μg/l	< 0,2 < 0,2
S tetrachlooretheen		< 0,2 < 0,1
S tetrachloormethaan	μg/l μg/l	< 0,1 < 0,1
S trans-1,2-dichlooretheen	μg/l	< 0,1
S trichlooretheen	μg/l	< 0,2
S trichloormethaan	μg/l	< 0,2
S som C+T dichlooretheen S som dichloorpropanen	μg/l	0,1 0,4
	μg/l ,,	U, T
Vluchtige gehalogeneerde alifaten -		.00
S tribroommethaan (bromoform)	μg/l	< 0,2

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.

- De met een 'S' gemerkte analyses zijn door RvA geaccrediteerd (L086) en op basis van het schema AS 3000 erkend.

Opdrachtverificatiecode: QPEV-TTUY-BBUW-ZAFP

Projectcode 1718343

Uw project omschrijving A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever IDDS Milieu B.V.

Opmerkingen m.b.t. analyses

Opmerking(en) algemeen

De volgende informatie is indien van toepassing verstrekt door de opdrachtgever: Project omschrijving, Monsterreferentie(s), Opgegeven bemonsteringsdatum, Matrix, Monsterdiepte, Potnr (Barcode), Veldgegevens, Veldwaarnemingen en Bemonsteringsdata. De opgegeven bemonsteringsdatum kan van invloed zijn op de geldigheid van de resultaten.

Sommatie van concentraties voor groepsparameters

De sommatie is uitgevoerd volgens AS3000 paragraaf 2.5.2 en bijlage 3.

Opdrachtverificatiecode: QPEV-TTUY-BBUW-ZAFP

Ref.: 1718343_certificaat_v1

Bijlage 1 van 2

ANALYSECERTIFICAAT

1718343

Projectcode
Uw project omschrijving
Opdrachtgever A5001-A. Einsteinweg 29 Alphen a/d Rijn

IDDS Milieu B.V.

Barcodeschema's

Monstercode Uw referentie	uw monsterref.	uw diepte	uw barcode
8197166 18a-1-1 18a (200-300)		2-3 2-3	0480544YA 0420255MM

Opdrachtverificatiecode: QPEV-TTUY-BBUW-ZAFP

Ref.: 1718343_certificaat_v1

Bijlage 2 van 2

ANALYSECERTIFICAAT

Projectcode : 1718343

Uw project omschrijving : A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever : IDDS Milieu B.V.

Analysemethoden Grondwater (AS3000)

AS3000

In dit analysecertificaat zijn de met 'S' gemerkte analyses uitgevoerd volgens de analysemethoden beschreven in het "Accreditatieschema Laboratoriumanalyses voor grond-, waterbodem- en grondwateronderzoek (AS SIKB 3000)". Het laboratoriumonderzoek is uitgevoerd volgens de onderstaande analysemethoden. Deze analyses zijn vastgelegd in het geldende accreditatie-certificaat met bijbehorende verrichtingenlijst L086 van Eurofins Omegam BV.

Barium (Ba) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Cadmium (Cd) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Kobalt (Co) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Koper (Cu) Kwik (Hg) (niet vluchtig) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Lood (Pb) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Molybdeen (Mo) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Nikkel (Ni) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Zink (Zn) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2

Minerale olie (florisil clean-up)
Aromaten (BTEXXN)
Styreen
Chlooralifaten
Chlooratheen (vinylchloride)
1,1-Dichlooretheen
Tribroommethaan

Conform AS3110 prestatieblad 1
Conform AS3130 prestatieblad 1

Opdrachtverificatiecode: QPEV-TTUY-BBUW-ZAFP

Ref.: 1718343_certificaat_v1

BIJLAGE 4.3

Certificaat asbest grond

IDDS Milieu B.V.

s-Gravendijckseweg 37 2201CZ NOORDWIJK ZH

Uw kenmerk : A5001-A. Einsteinweg 29 Alphen a/d Rijn

Ons kenmerk : Project 1710826 Validatieref. : 1710826_certificaat_v1 Opdrachtverificatiecode: JSGY-DIGT-VAUE-HRMD Bijlage(n) : 4 tabel(len) + 2 bijlage(n)

Amsterdam, 29 maart 2024

Hierbij zend ik u de resultaten van het laboratoriumonderzoek dat op uw verzoek is uitgevoerd in de door u aangeboden monsters.

De resultaten hebben uitsluitend betrekking op de monsters, zoals die door u voor analyse ter beschikking werden gesteld.

Het onderzoek is, met uitzondering van eventueel uitbesteed onderzoek, uitgevoerd door Eurofins Omegam. Informatie omtrent de gebruikte analysemethode(n) kunt u vinden in ons klantenportaal Mijn Lab onder "Info en Docs".

Ik wijs u erop dat het analysecertificaat alleen in zijn geheel mag worden gereproduceerd. Ik vertrouw erop uw opdracht volledig en naar tevredenheid te hebben uitgevoerd. Heeft u naar aanleiding van deze rapportage nog vragen, dan verzoek ik u contact op te nemen met onze klantenservice.

Hoogachtend, namens Eurofins Omegam,

Manager productie

Op dit certificaat zijn onze algemene voorwaarden van toepassing. Dit analysecertificaat mag niet anders dan in zijn geheel worden gereproduceerd.

Projectcode 1710826

Uw project omschrijving A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever IDDS Milieu B.V.

Monstercode : 8176439

Uw referentie ASB-MM01 01 (0-50) 02 (0-50) 03 (0-50) 04 (0-50) 05 (0-50) 06 (0-50)

25/03/2024 Opgegeven bemonsteringsdatum

Asbestonderzoek

Initialen analist 03-2024 Analysedatum

Analyse is uitgevoerd conform NEN 5898 (S).

Massa aangeleverde monster 16380 Droge massa aangeleverde monster : 14808 g Percentage droogrest 90,4 m/m %

Type zeving nat

zeeffractie (mm)	massa zeeffractie (gram)	percentage zeeffractie (m/m %)	massa onderzocht (gram)	percentage onderzocht (m/m %)	aantal asbest (deeltjes)	massa asbest-houdend materiaal (mg)
<0,5 mm	12552,3	86,0	13,3	0,11	n.v.t.	n.v.t.
0,5-1 mm	609,1	4,2	76,9	12,63	0	0,0
1-2 mm	820,0	5,6	210,9	25,72	0	0,0
2-4 mm	147,0	1,0	147,0	100,00	0	0,0
4-8 mm	234,5	1,6	234,5	100,00	0	0,0
8-20 mm	227,7	1,6	227,7	100,00	0	0,0
>20 mm	0,0	0,0	0,0	100,00	0	0,0
Totaal	14590,6	100,0	910,3		0	0,0

	asbest totaal			serpentijn asbest			amfibool asbest		
zeeffractie (mm)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)
<0,5 mm	-								
0,5-1 mm	0,0	0,0	0,4	0,0	0,0	0,2	0,0	0,0	0,2
1-2 mm	0,0	0,0	0,7	0,0	0,0	0,4	0,0	0,0	0,4
2-4 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
4-8 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
8-20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
>20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Totaal	<0,6	0,0	1,1	<0,6	0,0	0,5	0,0	0,0	0,5

Aangetroffen type asbest Geen Bijzonderheden waargenomen Geen

Serpentijn asbest is chrysotiel.

Amfibool asbest is amosiet, crocidoliet, actinoliet, anthophylliet en tremoliet.

De bepalingsgrens is bepaald voor de zeeffracties kleiner dan 4 mm. De totale bepalingsgrens is verkregen door de bepalingsgrenzen van de afzonderlijke zeeffracties te sommeren.

Het materiaal is middels polarisatiemicroscopie onderzocht, de analyse is uitgevoerd conform NEN 5896.

Gebondenheid	Serpentijn asbest	Amfibool asbest	totaal afgerond
hecht	0,0	0,0	0,0
niet hecht	0,0	0,0	0,0
totaal afgerond	0.0	0.0	

Gewogen concentratie (serpentijnasbestconcentratie vermeerderd met 10 maal de amfiboolasbestconcentratie) is: <0,6 mg/kg ds

De gewogen asbestconcentratie wordt berekend uit de niet-afgeronde gehalten aan serpentijn en amfibool asbest. De weergegeven resultaten zijn afgerond.

Verklaring kwalitatief onderzoek zeeffractie <0,5 mm:

-: geen asbest waargenomen

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.
- De met een 'S' gemerkte analyses zijn door RvA geaccrediteerd (L086) en op basis van het schema AS 3000 erkend.

Opdrachtverificatiecode: JSGY-DIGT-VAUE-HRMD

Ref.: 1710826 certificaat v1

Projectcode 1710826

Uw project omschrijving A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever IDDS Milieu B.V.

Monstercode : 8176440

Uw referentie ASB-MM02 07 (0-50) 08 (0-50) 09 (0-50) 10 (0-50) 11 (0-50) 12 (0-50)

25/03/2024 Opgegeven bemonsteringsdatum

Asbestonderzoek

Initialen analist 03-2024 Analysedatum

Analyse is uitgevoerd conform NEN 5898 (S).

Massa aangeleverde monster 16180 Droge massa aangeleverde monster : 14659 g Percentage droogrest 90,6 m/m %

Type zeving nat

zeeffractie (mm)	massa zeeffractie (gram)	percentage zeeffractie (m/m %)	massa onderzocht (gram)	percentage onderzocht (m/m %)	aantal asbest (deeltjes)	massa asbest-houdend materiaal (mg)
<0,5 mm	13083,7	90,5	13,3	0,10	n.v.t.	n.v.t.
0,5-1 mm	464,9	3,2	72,9	15,68	0	0,0
1-2 mm	200,3	1,4	63,0	31,45	0	0,0
2-4 mm	154,5	1,1	154,5	100,00	0	0,0
4-8 mm	268,2	1,9	268,2	100,00	0	0,0
8-20 mm	279,1	1,9	279,1	100,00	0	0,0
>20 mm	0,0	0,0	0,0	100,00	0	0,0
Totaal	14450,7	100,0	851,0		0	0,0

	asbest totaal			serpentijn asbest			amfibool asbest		
zeeffractie (mm)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)
<0,5 mm	-								
0,5-1 mm	0,0	0,0	0,3	0,0	0,0	0,1	0,0	0,0	0,1
1-2 mm	0,0	0,0	0,6	0,0	0,0	0,3	0,0	0,0	0,3
2-4 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
4-8 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
8-20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
>20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Totaal	<0,5	0,0	0,8	<0,5	0,0	0,4	0,0	0,0	0,4

Aangetroffen type asbest Geen Bijzonderheden waargenomen Geen

Serpentijn asbest is chrysotiel.

Amfibool asbest is amosiet, crocidoliet, actinoliet, anthophylliet en tremoliet.

De bepalingsgrens is bepaald voor de zeeffracties kleiner dan 4 mm. De totale bepalingsgrens is verkregen door de bepalingsgrenzen van de afzonderlijke zeeffracties te sommeren.

Het materiaal is middels polarisatiemicroscopie onderzocht, de analyse is uitgevoerd conform NEN 5896.

	Gebondenheid	Serpentijn asbest	Amfibool asbest	totaal afgerond
Г	hecht	0,0	0,0	0,0
	niet hecht	0,0	0,0	0,0
Г	totaal afgerond	0.0	0.0	

Gewogen concentratie (serpentijnasbestconcentratie vermeerderd met 10 maal de amfiboolasbestconcentratie) is: <0,5 mg/kg ds

De gewogen asbestconcentratie wordt berekend uit de niet-afgeronde gehalten aan serpentijn en amfibool asbest. De weergegeven resultaten zijn afgerond.

Verklaring kwalitatief onderzoek zeeffractie <0,5 mm:

-: geen asbest waargenomen

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.
- De met een 'S' gemerkte analyses zijn door RvA geaccrediteerd (L086) en op basis van het schema AS 3000 erkend.

Opdrachtverificatiecode: JSGY-DIGT-VAUE-HRMD

Ref.: 1710826 certificaat v1

Projectcode 1710826

Uw project omschrijving A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever IDDS Milieu B.V.

Monstercode : 8176441

Uw referentie ASB-MM03 13 (0-50) 14 (0-50) 15 (0-50) 16 (0-50) 17 (0-50) 18 (0-50)

25/03/2024 Opgegeven bemonsteringsdatum

Asbestonderzoek

Initialen analist 29-03-2024 Analysedatum

Analyse is uitgevoerd conform NEN 5898 (S).

Massa aangeleverde monster 16260 Droge massa aangeleverde monster : 13967 g Percentage droogrest 85,9 m/m %

Type zeving nat

zeeffractie (mm)	massa zeeffractie (gram)	percentage zeeffractie (m/m %)	massa onderzocht (gram)	percentage onderzocht (m/m %)	aantal asbest (deeltjes)	massa asbest-houdend materiaal (mg)
<0,5 mm	12349,7	89,7	10,0	0,08	n.v.t.	n.v.t.
0,5-1 mm	553,1	4,0	113,0	20,43	0	0,0
1-2 mm	229,1	1,7	87,8	38,32	0	0,0
2-4 mm	147,9	1,1	147,9	100,00	0	0,0
4-8 mm	208,2	1,5	208,2	100,00	0	0,0
8-20 mm	281,8	2,0	281,8	100,00	0	0,0
>20 mm	0,0	0,0	0,0	100,00	0	0,0
Totaal	13769,8	100,0	848,7		0	0,0

	asbest totaal serpentijn asbest			st	amfibool asbest				
zeeffractie (mm)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)
<0,5 mm	-								
0,5-1 mm	0,0	0,0	0,2	0,0	0,0	0,1	0,0	0,0	0,1
1-2 mm	0,0	0,0	0,4	0,0	0,0	0,2	0,0	0,0	0,2
2-4 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
4-8 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
8-20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
>20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Totaal	<0,4	0,0	0,7	<0,4	0,0	0,3	0,0	0,0	0,3

Aangetroffen type asbest Geen Bijzonderheden waargenomen Geen

Serpentijn asbest is chrysotiel.

Amfibool asbest is amosiet, crocidoliet, actinoliet, anthophylliet en tremoliet.

De bepalingsgrens is bepaald voor de zeeffracties kleiner dan 4 mm. De totale bepalingsgrens is verkregen door de bepalingsgrenzen van de afzonderlijke zeeffracties te sommeren.

Het materiaal is middels polarisatiemicroscopie onderzocht, de analyse is uitgevoerd conform NEN 5896.

Gebondenheid	Serpentijn asbest	Amfibool asbest	totaal afgerond
hecht	0,0	0,0	0,0
niet hecht	0,0	0,0	0,0
totaal afgerond	0.0	0.0	

Gewogen concentratie (serpentijnasbestconcentratie vermeerderd met 10 maal de amfiboolasbestconcentratie) is: <0,4 mg/kg ds

De gewogen asbestconcentratie wordt berekend uit de niet-afgeronde gehalten aan serpentijn en amfibool asbest. De weergegeven resultaten zijn afgerond.

Verklaring kwalitatief onderzoek zeeffractie <0,5 mm:

-: geen asbest waargenomen

Opdrachtverificatiecode: JSGY-DIGT-VAUE-HRMD

Ref.: 1710826 certificaat v1

Ref.: 1710826 certificaat v1

ANALYSECERTIFICAAT

Projectcode : 1710826

Uw project omschrijving : A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever : IDDS Milieu B.V.

Opmerkingen m.b.t. analyses

Opmerking(en) algemeen

De volgende informatie is indien van toepassing verstrekt door de opdrachtgever: Project omschrijving, Monsterreferentie(s), Opgegeven bemonsteringsdatum, Matrix, Monsterdiepte, Potnr (Barcode), Veldgegevens, Veldwaarnemingen en Bemonsteringsdata. De opgegeven bemonsteringsdatum kan van invloed zijn op de geldigheid van de resultaten.

Asbest

Individuele monsters van dit project zijn als asbest verdacht gekwalificeerd. De analysedeelmonsters zijn met beschermende maatregelen in het laboratorium in behandeling genomen.

Opmerking bij project:

- Eurofins Omegam heeft het asbestonderzoek in dit/deze monster(s) uitgevoerd volgens de NEN 5898, en zoals beschreven in een aparte bijlage als onderdeel van dit analysecertificaat. Voor de analyseresultaten van het asbestonderzoek geldt dat Eurofins Omegam de analyse heeft uitgevoerd in de monsters die de opdrachtgever, zoals deze staan vermeld in de koptekst van dit analysecertificaat, zelf heeft genomen of laten nemen en aan Eurofins Omegam heeft aangeboden. Eurofins Omegam draagt geen verantwoordelijkheid inzake de herkomst en representativiteit alsmede de veiligheid tijdens de monsterneming.

Ref.: 1710826_certificaat_v1

Bijlage 1 van 2

ANALYSECERTIFICAAT

1710826

Projectcode
Uw project omschrijving
Opdrachtgever A5001-A. Einsteinweg 29 Alphen a/d Rijn

IDDS Milieu B.V.

Barcodeschema's

Monstercode	Uw referentie	uw monsterref.	uw diepte	uw barcode
8176439	ASB-MM01 01 (0-50) 02 (0-50) 03 (0-50) 04 (0-50) 05 (0-50) 06 (0-50)	01 02 03 04 05 06	0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5	1785466MG 1785466MG 1785466MG 1785466MG 1785466MG 1785466MG
8176440	ASB-MM02 07 (0-50) 08 (0-50) 09 (0-50) 10 (0-50) 11 (0-50) 12 (0-50)	07 08 09 10 11	0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5	1785465MG 1785465MG 1785465MG 1785465MG 1785465MG 1785465MG
8176441	ASB-MM03 13 (0-50) 14 (0-50) 15 (0-50) 16 (0-50) 17 (0-50) 18 (0-50)	13 14 15 16 17	0-0.5 0-0.5 0-0.5 0-0.5 0-0.5 0-0.5	1785463MG 1785463MG 1785463MG 1785463MG 1785463MG 1785463MG

Ref.: 1710826 certificaat v1

Bijlage 2 van 2

ANALYSECERTIFICAAT

Projectcode : 1710826

Uw project omschrijving : A5001-A. Einsteinweg 29 Alphen a/d Rijn

Opdrachtgever : IDDS Milieu B.V.

Analysemethoden Grond (AS3000)

AS3000

In dit analysecertificaat zijn de met 'S' gemerkte analyses uitgevoerd volgens de analysemethoden beschreven in het "Accreditatieschema Laboratoriumanalyses voor grond-, waterbodem- en grondwateronderzoek (AS SIKB 3000)". Het laboratoriumonderzoek is uitgevoerd volgens de onderstaande analysemethoden. Deze analyses zijn vastgelegd in het geldende accreditatie-certificaat met bijbehorende verrichtingenlijst L086 van Eurofins Omegam BV.

Asbestonderzoek : Conform AS3070 prestatieblad 1 en NEN 5898

BIJLAGE 5.1
Toetsingstabellen grond

Tabel 1: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM01			
Certificaatcode	1710825			
Datum	25-3-2024			
Traject (cm-mv)	0-50			
Humus (% ds)	2,7			
Lutum (% ds)	9,2			
Datum van toetsing	2-4-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	85,9	85,9	%	GTA (5)
Lutum	9,2	00,0	%	<u> </u>
Organische stof (humus)	2,7		%	
Aard artefacten	۷,1		-	
Gewicht artefacten			g	
			3	
METALEN				
Barium	41	84	mg/kg ds	GTA (5)
Cadmium	< 0,20	<0,21	mg/kg ds	<= W
Kobalt	3,3	6,5	mg/kg ds	<= W
Koper	6,6	10,7	mg/kg ds	<=IW
Kwik	0,09	0,12	mg/kg ds	<=IW
Lood	33	45	mg/kg ds	<=IW
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IW
Nikkel	10	18	mg/kg ds	<= W
Zink	38	65	mg/kg ds	<=IW
PAK				
The Village of the Vi	4.0.05	-0.04	re- er/licer, ele	
Naftaleen	< 0,05	<0,04	mg/kg ds	
Fenanthreen	0,05	0,05	mg/kg ds	
Anthraceen	< 0,05	<0,04	mg/kg ds	
Fluorantheen	0,15	0,15	mg/kg ds	
Benzo(a)anthraceen	0,13	0,13	mg/kg ds	
Chryseen	0,17	0,17	mg/kg ds	
Benzo(k)fluorantheen	0,11	0,11	mg/kg ds	
Benzo(a)pyreen	0,13	0,13	mg/kg ds	
Benzo(g,h,i)peryleen	0,07	0,07	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	0,07	0,07	mg/kg ds	
PAK 10 VROM	0,95	0,95	mg/kg ds	<=IW
PCB'S				
PCB 28	< 0,001	<0,003	mg/kg ds	
PCB 52	< 0,001	<0,003	mg/kg ds	
PCB 101	< 0,001	<0,003	mg/kg ds	
PCB 118	< 0,001	<0,003	mg/kg ds	
PCB 138	< 0,001	<0,003	mg/kg ds	
PCB 153	< 0,001	<0,003	mg/kg ds	
PCB 180	< 0,001	<0,003	mg/kg ds	
PCB (som 7)	0,001	<0,018	mg/kg ds	<= W
MINERALE OLIE	- 2E	<01	malks do	<-I\\\
Minerale olie C10 - C40	< 35	<91	mg/kg ds	<=IW

Tabel 2: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM02			
Certificaatcode	1710825			
Datum	25-3-2024			
Traject (cm-mv)	0-50			
Humus (% ds)	3			
Lutum (% ds)	4,7			
Datum van toetsing	2-4-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	84,4	84,4	%	GTA (5)
Lutum	4,7	J ., ,	%	<u> </u>
Organische stof (humus)	3,0		%	
Aard artefacten	0,0		-	
Gewicht artefacten			g	
Comonic artolactori			9	
METALEN				
Barium	42	122	mg/kg ds	GTA ⁽⁵⁾
Cadmium	< 0,20	<0,22	mg/kg ds	<= W
Kobalt	3,3	9,0	mg/kg ds	<=IVV
Koper	8,0	14,7	mg/kg ds	<=IVV
Kwik	0,07	0,10	mg/kg ds	<=IW
Lood	44	65	mg/kg ds	<=IVV
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IVV
Nikkel	10	24	mg/kg ds	<=IW
Zink	53	108	mg/kg ds	<=IW
PAK				
Naftaleen	< 0.05	<0.04	mg/kg ds	
Fenanthreen	0,06	0,04	mg/kg ds	
Anthraceen	< 0,05	<0.04	mg/kg ds mg/kg ds	
Fluorantheen	0,15			
	0,15	0,15	mg/kg ds	
Benzo(a)anthraceen		0,12	mg/kg ds	
Chryseen Ponzo(k)fluoranthoon	0,16	0,16	mg/kg ds	
Benzo(k)fluorantheen	0,11 0,16	0,11	mg/kg ds	
Benzo(a)pyreen Benzo(g,h,i)peryleen	0,16	0,16 0,10	mg/kg ds mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	0,10			
		0,08	mg/kg ds	Z-1\A/
PAK 10 VROM	1,0	1,0	mg/kg ds	<= W
PCB'S				
PCB 28	< 0,001	<0,002	mg/kg ds	
PCB 52	< 0,001	<0,002	mg/kg ds	
PCB 101	< 0,001	<0,002	mg/kg ds	
PCB 118	< 0,001	<0,002	mg/kg ds	
PCB 138	< 0,001	<0,002	mg/kg ds	
PCB 153	< 0,001	<0,002	mg/kg ds	
PCB 180	< 0,001	<0,002	mg/kg ds	
PCB (som 7)		<0,016	mg/kg ds	<= W
MINERALE OLIE	, DE	-02	malke do	<-I\A/
Minerale olie C10 - C40	< 35	<82	mg/kg ds	<=IW

Tabel 3: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM03			
Certificaatcode	1710825			
Datum	25-3-2024			
Traject (cm-mv)	0-50			
Humus (% ds)	2,3			
Lutum (% ds)	6,6			
Datum van toetsing	2-4-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	86,0	86,0	%	GTA (5)
Lutum	6,6		%	
Organische stof (humus)	2,3		%	
Aard artefacten	_,~		-	
Gewicht artefacten			g	
METALEN				
Barium	42	103	mg/kg ds	GTA (5)
Cadmium	< 0,20	<0,22	mg/kg ds	<= W
Kobalt	3,6	8,4	mg/kg ds	<= W
Koper	8,8	15,6	mg/kg ds	<= W
Kwik	0,07	0,09	mg/kg ds	<= W
Lood	30	43	mg/kg ds	<= W
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IW
Nikkel	11	23	mg/kg ds	<=IW
Zink	57	109	mg/kg ds	<= W
PAK				
Naftaleen	< 0.05	<0.04	mg/kg ds	
Fenanthreen	< 0,05	<0,04	mg/kg ds	
Anthraceen	< 0,05	<0,04	mg/kg ds	
Fluorantheen	0,07	0,07	mg/kg ds	
Benzo(a)anthraceen	< 0,05	<0,04	mg/kg ds	
Chryseen	0,07	0,07	mg/kg ds	
Benzo(k)fluorantheen	< 0,05	<0.04	mg/kg ds	
Benzo(a)pyreen	0,07	0,07	mg/kg ds	
Benzo(g,h,i)peryleen	0,06	0,06	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	0,07	0,00	mg/kg ds	
PAK 10 VROM	0,52	0,52	mg/kg ds	<=IW
	0,02	0,02	mg/kg da	
PCB`S				
PCB 28	< 0,001	<0,003	mg/kg ds	
PCB 52	< 0,001	<0,003	mg/kg ds	
PCB 101	< 0,001	<0,003	mg/kg ds	
PCB 118	< 0,001	<0,003	mg/kg ds	
PCB 138	0,002	0,009	mg/kg ds	
PCB 153	< 0,001	<0,003	mg/kg ds	
PCB 180	< 0,001	<0,003	mg/kg ds	
PCB (som 7)		0,027	mg/kg ds	<= W
MINERALE OLIE				
Minerale olie C10 - C40	< 35	<107	mg/kg ds	<= W
WILLION COLO - CHO	٠ ٥٥	107	mg/kg us	2-14V

Tabel 4: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monetarnummer	M04			
monsternummer Certificaatcode	1710825			
Datum	25-3-2024			
	130-170			
Traject (cm-mv) Humus (% ds)	5,6			
Lutum (% ds)	7,6			
Datum van toetsing	2-4-2024			Valdantana
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
0./50.0				
OVERIG	70.0	70.0	0/	OTA (5)
Droge stof	72,3	72,3	%	GTA (5)
Lutum	7,6		%	
Organische stof (humus)	5,6		%	
Aard artefacten			-	
Gewicht artefacten			g	
METALEN				
Barium	74	169	mg/kg ds	GTA (5)
Cadmium	< 0,20	<0,19	mg/kg ds	<= W
Kobalt	3,9	8,5	mg/kg ds	<= W
Koper	7,6	11,9	mg/kg ds	<= W
Kwik	0,10	0,13	mg/kg ds	<=IW
Lood	18	24	mg/kg ds	<= W
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IW
Nikkel	14	28	mg/kg ds	<=IW
Zink	27	47	mg/kg ds	<= W
PAK				
Naftaleen	< 0,05	<0,04	mg/kg ds	
Fenanthreen	< 0,05	<0,04	mg/kg ds	
Anthraceen	< 0,05	<0,04	mg/kg ds	
Fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)anthraceen	< 0,05	<0,04	mg/kg ds	
Chryseen	< 0,05	<0,04	mg/kg ds	
Benzo(k)fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)pyreen	< 0,05	<0,04	mg/kg ds	
Benzo(g,h,i)peryleen	< 0,05	<0,04	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	< 0,05	<0,04	mg/kg ds	
PAK 10 VROM	0,35	<0,35	mg/kg ds	<= W
PCB'S				
PCB 28	< 0,001	<0,001	mg/kg ds	
PCB 52	< 0,001	<0,001	mg/kg ds	
PCB 101	< 0,001	<0,001	mg/kg ds	
PCB 118	< 0,001	<0,001	mg/kg ds	
PCB 138	< 0,001	<0,001	mg/kg ds	
PCB 153	< 0,001	<0,001	mg/kg ds	
PCB 180	< 0,001	<0,001	mg/kg ds	
PCB (som 7)	5,551	<0,0088	mg/kg ds	<=IW
MINERALE OLIE				
Minerale olie C10 - C40	96	171	mg/kg ds	<=IW
Triniciale one of the offi	00	1111	ing/kg us	3 111

Tabel 5: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM05			
Certificaatcode	1710825			
Datum	25-3-2024			
Traject (cm-mv)	50-180			
Humus (% ds)	0,6			
Lutum (% ds)	1,1			
Datum van toetsing	2-4-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	85,3	85,3	%	GTA ⁽⁵⁾
Lutum	1,1	00,0	%	517.
Organische stof (humus)	0,6		%	
Aard artefacten	0,0		-	
Gewicht artefacten			g	
Gewicht affelactell			9	
METALEN				
Barium	< 20	<54	mg/kg ds	GTA (5)
Cadmium	< 0,20	<0,24	mg/kg ds	<=IW
Kobalt	< 3,0	<7,4	mg/kg ds	<=IW
Koper	< 5,0	<7,2	mg/kg ds	<=IW
Kwik	< 0,05	<0,05	mg/kg ds	<=IW
Lood	< 10	<11	mg/kg ds	<=IW
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IW
Nikkel	7	20	mg/kg ds	<=IW
Zink	< 20	<33	mg/kg ds	<=IW
PAK				
Naftaleen	< 0,05	<0.04	mg/kg ds	
Fenanthreen	< 0,05	<0,04	mg/kg ds	
Anthraceen	< 0,05	<0,04	mg/kg ds	
Fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)anthraceen	< 0,05	<0,04	mg/kg ds	
Chryseen	< 0,05	<0,04	mg/kg ds mg/kg ds	
Chryseen Benzo(k)fluorantheen	< 0,05	<0,04		
	< 0,05	<0,04	mg/kg ds	
Benzo(a)pyreen	< 0,05	<0,04	mg/kg ds mg/kg ds	
Benzo(g,h,i)peryleen		<0,04		
Indeno-(1,2,3-c,d)pyreen PAK 10 VROM	< 0,05 0,35	<0,04	mg/kg ds	<= W
FAN 10 VROIVI	0,35	<0,35	mg/kg ds	~-1VV
PCB'S				
PCB 28	< 0,001	<0,004	mg/kg ds	
PCB 52	< 0,001	<0,004	mg/kg ds	
PCB 101	< 0,001	<0,004	mg/kg ds	
PCB 118	< 0,001	<0,004	mg/kg ds	
PCB 138	< 0,001	<0,004	mg/kg ds	
PCB 153	< 0,001	<0,004	mg/kg ds	
PCB 180	< 0,001	<0,004	mg/kg ds	
PCB (som 7)	-,	<0,025	mg/kg ds	<=IW
MINERALE OLIE				
MINERALE OLIE Minerale olie C10 - C40	< 35	<123	mg/kg ds	<= W
Millerale Olle C 10 - C40	> 35	\1Z3	mg/kg as	~-IVV

Tabel 6: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

	MMACC			
monsternummer	MM06 1710825			
Certificaatcode				
Datum	25-3-2024			
Traject (cm-mv)	100-200			
Humus (% ds)	10,4			
Lutum (% ds)	23,9			
Datum van toetsing	2-4-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	55,3	55,3	%	GTA (5)
Lutum	23,9		%	
Organische stof (humus)	10,4		%	
Aard artefacten			-	
Gewicht artefacten			g	
METALEN				
Barium	170	176	mg/kg ds	GTA ⁽⁵⁾
Cadmium	0,28	0,28	mg/kg ds mg/kg ds	<=IW
Kobalt	10	10	mg/kg ds	<=IW
224 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19	19		<=IW
Koper Kwik			mg/kg ds mg/kg ds	<=IW
Lood	0,06 23	0,06	mg/kg ds	<=IW
				<=IW
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IW
Nikkel Zink	42 77	79	mg/kg ds mg/kg ds	<=IW
			mgmg ac	
PAK				
Naftaleen	< 0,05	<0,03	mg/kg ds	
Fenanthreen	< 0,05	<0,03	mg/kg ds	
Anthraceen	< 0,05	<0,03	mg/kg ds	4
Fluorantheen	0,08	0,08	mg/kg ds	
Benzo(a)anthraceen	0,06	0,06	mg/kg ds	
Chryseen	0,09	0,09	mg/kg ds	
Benzo(k)fluorantheen	0,06	0,06	mg/kg ds	
Benzo(a)pyreen	0,08	0,08	mg/kg ds	
Benzo(g,h,i)peryleen	< 0,05	<0,03	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	< 0,05	<0,03	mg/kg ds	
PAK 10 VROM	0,54	0,52	mg/kg ds	<= W
PCB'S				
PCB 28	< 0,001	<0,001	mg/kg ds	
PCB 52	< 0,001	<0,001	mg/kg ds	
PCB 101	< 0,001	<0,001	mg/kg ds	
PCB 118	< 0,001	<0,001	mg/kg ds	
PCB 138	< 0,001	<0,001	mg/kg ds	
PCB 153	< 0,001	<0,001	mg/kg ds	
PCB 180	< 0,001	<0,001	mg/kg ds	
PCB (som 7)	0,001	<0,0047	mg/kg ds	<=IW
MINEDALE OLIE				
MINERALE OLIE Minerale olie C10 - C40	96	92	mg/kg ds	<= W
William Olic Olic - O40	30	J2	ing/kg us	N-144

GTA : Geen toetsnorm aanwezig < : kleiner dan de detectielimiet

: Kleiner of gelijk aan Interventiewaarde
: Groter dan Interventiewaarde

5 : IW ontbreekt: zorgplicht van toepassing

: verhoogde rapportagegrens
GSSD : Gestandaardiseerde meetwaarde

- Getoetst via de BoToVa service, versie 1.0.0 -

BIJLAGE 5.2

Toetsingstabellen grondwater

Tabel 1: Gemeten concentraties in grondwater met beoordeling conform de Wet Bodembescherming

Watermonster		07-1-1			18a-1-1		
Datum bemonstering		2-4-2024			9-4-2024		
Filterdiepte (m -mv)		2,00 - 3,00			2,00 - 3,00		
Datum van toetsing		8-4-2024			15-4-2024		
Monsterconclusie		Overschrijdi	ng Streefwaard	le	Overschrijdi	ng Streefwaard	e
Monstermelding 1					•		
Monstermelding 2							
Monstermelding 3							
		Meetw	GSSD	Index	Meetw	GSSD	Index
METALEN							
	/1	150	150	0.47	340	340	0.5
Barium	µg/l	150		0,17			0,5
Cadmium Kobalt	μg/l	<0,2	<0,1	-0,05 -0,2	<0,2	<0,1	-0,05 -0,21
100000000000000000000000000000000000000	μg/l	4,1 2,7	4,1 2,7		3,2 <2	3,2 <1	-0,21
Koper Kwik	µg/l	<0,05	<0,04	-0,21 -0,06	<0,05	<0,04	-0,23
Lood	µg/l	<2	<1		<2	<1	
Molybdeen	μg/l		<u> </u>	-0,23 -0	<2	<1	-0,23
	μg/l	3,6	3,6				-0,01
Nikkel	μg/l	10	10	-0,08	6,5	6,5	-0,14
Zink	μg/l	11	11	-0,07	20	20	-0,06
VLUCHTIGE AROMATISCHE							
KOOLWATERSTOFFEN							
Benzeen	μg/l	<0,2	<0,1	-0	<0,2	<0,1	-0
Tolueen	μg/l	<0,2	<0,1	-0,01	<0,2	<0,1	-0,01
Ethylbenzeen	μg/l	<0,2	<0,1	-0,03	<0,2	<0,1	-0,03
ortho-Xyleen	μg/l	<0,1	<0,1		<0,1	<0,1	
meta-/para-Xyleen (som)	μg/l	<0,2	<0,1		<0,2	<0,1	
Xylenen (som)	μg/l	0,2	<0.2	0	0,2	<0.2	0
Styreen (Vinylbenzeen)	μg/l	<0,2	<0,1	-0,02	<0,2	<0,1	-0.02
Som 16 Aromatische	µg/l		<0,77 ^(2,7)	14)	5,2	<0,77 ^(2,7)	
oplosmiddelen	1.0		2000 * 00 90				
PAK							
Naftaleen	μg/l	<0.02	<0,01	0	<0.02	<0,01	0
PAK 10 VROM	μg/ι	~0,0Z	<0,002		~0,02	<0,000	
PAR 10 VROW	-		<0,0002	20(**)		<0,0002	20,
VOCL							
1.1-Dichloorethaan	μg/l	<0.2	<0.1	-0,01	<0.2	<0.1	-0.01
1,2-Dichloorethaan	μg/l	<0,2	<0,1	-0,02	<0,2	<0,1	-0,02
1,1-Dichlooretheen	μg/l	<0,1	<0,1	0,01	<0,1	<0,1	0,01
cis-1,2-Dichlooretheen	μg/l	<0,1	<0,1		<0,1	<0,1	-,
trans-1,2-Dichlooretheen	µg/l	<0,1	<0,1		<0,1	<0,1	
cis + trans-1,2-	µg/l	0,1	<0.1	0,01	0,1	<0,1	0,01
Dichlooretheen	F-3-	٠,٠	-,.	-,		-,.	٥,٠٠
Dichloormethaan	μg/l	<0,2	<0,1	0	<0,2	<0,1	0
1,1-Dichloorpropaan	μg/l	<0,2	<0,1		<0,2	<0,1	
1,2-Dichloorpropaan	μg/l	<0,2	<0,1		<0,2	<0,1	
1,3-Dichloorpropaan	μg/l	<0,2	<0,1		<0,2	<0,1	
Dichloorpropaan	μg/l	0,4	<0,4	-0	0,4	<0,4	-0
Tetrachlooretheen (Per)	μg/l	<0,1	<0,1	0	<0,1	<0,1	0
Tetrachloormethaan	μg/l	<0,1	<0,1	0,01	<0.1	<0,1	0,01
(Tetra)			*****	0,01			0,01
1,1,1-Trichloorethaan	μg/l	<0,1	<0,1	0	<0,1	<0,1	0
1,1,2-Trichloorethaan	μg/l	<0,1	<0,1	0	<0,1	<0,1	0
Trichlooretheen (Tri)	μg/l	<0,2	<0,1	-0,05	<0,2	<0,1	-0,05
Trichloormethaan	µg/l	<0,2	<0,1	-0,01	<0,2	<0,1	-0,01
(Chloroform)						Contra and the Contra	
Vinylchloride	μg/l	<0,2	<0,1	0,03	<0,2	<0,1	0,03
Tribroommethaan (bromoform)	µg/l	<0,2	<0,1 ⁽¹⁴⁾		<0,2	<0,1 ⁽¹⁴⁾	
MINERALE OLIE							
Minerale olie C10 - C40	μg/l	<50	<35	-0,03	<50	<35	-0,03
51616 6116 6116	1 M 9' '	, 50		0,00	- 55		3,00

GTA : Geen toetsnorm aanwezig : kleiner dan de detectielimiet : <= Streefwaarde

8,88 8,88 : > Streefwaarde 8,88 11 : > Interventiewaarde

Enkele parameters ontbreken in de berekening van de somfractie
 Streefwaarde ontbreekt zorgplicht van toepassing
 Enkele parameters ontbreken in de som

14

2

: verhoogde rapportagegrens : Gestandaardiseerde meetwaarde GSSD

: (GSSD - S) / (I - S) Index

- Getoetst via de BoToVa service, versie 1.0.0 -

Tabel 2: Normwaarden conform de Wet Bodembescherming

		S	S Diep	Indicatief I
METALEN				
Barium	μg/l	50	200	625
Cadmium	μg/l	0,4	0,06	6
Kobalt	μg/l	20	0,7	100
Koper	µg/l	15	1,3	75
Kwik	µg/l	0,05	0,01	0,3
Lood	μg/l	15	1,7	75
Molybdeen	μg/l	5	3,6	300
Nikkel	μg/l	15	2,1	75
Zink	μg/l	65	24	800
VLUCHTIGE AROMATISCHE KOOLWATERSTOFFEN				
Benzeen	μg/l	0,2		30
Tolueen	μg/l	7		1000
Ethylbenzeen	µg/l	4		150
Xylenen (som)	µg/l	0.2		70
Styreen (Vinylbenzeen)	μg/l	6		300
Som 16 Aromatische oplosmiddelen	μg/l			150
PAK				
Naftaleen	μg/l	0,01		70
VOCL				
1,1-Dichloorethaan	μg/l	7		900
1,2-Dichloorethaan	μg/l	7		400
1,1-Dichlooretheen	μg/l	0,01		10
cis + trans-1,2-Dichlooretheen	μg/l	0,01		20
Dichloormethaan	μg/l	0,01		1000
Dichloorpropaan	μg/l	0,8		80
Tetrachlooretheen (Per)	μg/l	0,01		40
Tetrachloormethaan (Tetra)	μg/l	0,01		10
1,1,1-Trichloorethaan	μg/l	0,01		300
1,1,2-Trichloorethaan	μg/l	0,01		130
Trichlooretheen (Tri)	μg/l	24		500
Trichloormethaan (Chloroform)	μg/l	6		400
Vinylchloride	μg/l	0,01		5
Tribroommethaan (bromoform)	μg/l			630
MINERALE OLIE				
Minerale olie C10 - C40	μg/l	50	<u> </u>	600

BIJLAGE 5.3 Toetsing PFAS grond

Kenmerk project A5001
Locatie A. Einsteinweg, Alphen a/d Rijn
Datum 12-4-2024

Stof	Gehalte (µg/kg)	GSSD	OORDEEL
Organisch stof	2,7		
Monstercode:	MM01		
perfluorbutaanzuur (PFBA)	0,1	0,10	LANDBOUW en NATUUR
perfluorpentaanzuur (PFPeA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorhexaanzuur (PFHxA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorheptaanzuur (PFHpA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluoroctaanzuur (PFOA)	1	1,00	LANDBOUW en NATUUR
perfluoroctaanzuur (PFOA) vertakt	< 0,1	0,07	LANDBOUW en NATUUR
perfluornonaanzuur (PFNA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluordecaanzuur (PFDA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorundecaanzuur (PFUnDA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluordodecaanzuur (PFDoDA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluortridecaanzuur (PFTrDA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluortetradecaanzuur (PFTeDA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorhexadecaanzuur (PFHxDA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluoroctadecaanzuur (PFODA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorbutaansulfonaat (PFBS)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorpentaansulfonaat (PFPeS)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorhexaansulfonaat (PFHxS)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorheptaansulfonaat (PFHpS)	< 0,1	0,07	LANDBOUW en NATUUR
perfluoroctaansulfonaat (PFOS)	0,5	0,50	LANDBOUW en NATUUR
perfluoroctaansulfonaat (PFOS) vertakt	0,1	0,10	LANDBOUW en NATUUR
perfluordecaansulfonaat (PFDS)	< 0,1	0,07	LANDBOUW en NATUUR
4:2 fluortelomeer sulfonzuur (4:2 FTS)	< 0,1	0,07	LANDBOUW en NATUUR
6:2 fluortelomeer sulfonzuur (6:2 FTS)	< 0,1	0,07	LANDBOUW en NATUUR
8:2 fluortelomeer sulfonzuur (8:2 FTS)	< 0,1	0,07	LANDBOUW en NATUUR
10:2 fluortelomeer sulfonzuur (10:2 FTS)	< 0,1	0,07	LANDBOUW en NATUUR
N-methylperfluoroctaansulfonamide acetaat (MeFOSAA)	< 0,1	0,07	LANDBOUW en NATUUR
N-methylperfluoroctaansulfonamide (MeFOSA)	< 0,1	0,07	LANDBOUW en NATUUR
N-ethylperfluoroctaansulfonamide acetaat (EtFOSAA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluoroctaansulfonamide (PFOSA)	< 0,1	0,07	LANDBOUW en NATUUR
8:2 polyfluoralkyl fosfaat diester (8:2 diPAP)	< 0,1	0,07	LANDBOUW en NATUUR
som PFOA	1,1	1,10	LANDBOUW en NATUUR
som PFOS	0,6	0,60	LANDBOUW en NATUUR
	Risicoindex		
PFOS- PFOA risicoindex	0,028502825		GEEN MENGSELTOXICITEI1

Kenmerk project
Locatie
Datum
A5001
A. Einsteinweg, Alphen a/d Rijn
12-4-2024

Stof	Gehalte (µg/kg)	GSSD	OORDEEL
Organisch stof	3		
Monstercode:	MM02		
perfluorbutaanzuur (PFBA)	0,1	0,10	LANDBOUW en NATUUR
perfluorpentaanzuur (PFPeA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorhexaanzuur (PFHxA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorheptaanzuur (PFHpA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluoroctaanzuur (PFOA)	0,4	0,40	LANDBOUW en NATUUR
perfluoroctaanzuur (PFOA) vertakt	< 0,1	0,07	LANDBOUW en NATUUR
perfluornonaanzuur (PFNA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluordecaanzuur (PFDA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorundecaanzuur (PFUnDA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluordodecaanzuur (PFDoDA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluortridecaanzuur (PFTrDA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluortetradecaanzuur (PFTeDA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorhexadecaanzuur (PFHxDA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluoroctadecaanzuur (PFODA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorbutaansulfonaat (PFBS)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorpentaansulfonaat (PFPeS)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorhexaansulfonaat (PFHxS)	< 0,1	0,07	LANDBOUW en NATUUR
perfluorheptaansulfonaat (PFHpS)	< 0,1	0,07	LANDBOUW en NATUUR
perfluoroctaansulfonaat (PFOS)	0,5	0,50	LANDBOUW en NATUUR
perfluoroctaansulfonaat (PFOS) vertakt	0,2	0,20	LANDBOUW en NATUUR
perfluordecaansulfonaat (PFDS)	< 0,1	0,07	LANDBOUW en NATUUR
4:2 fluortelomeer sulfonzuur (4:2 FTS)	< 0,1	0,07	LANDBOUW en NATUUR
6:2 fluortelomeer sulfonzuur (6:2 FTS)	< 0,1	0,07	LANDBOUW en NATUUR
8:2 fluortelomeer sulfonzuur (8:2 FTS)	< 0,1	0,07	LANDBOUW en NATUUR
10:2 fluortelomeer sulfonzuur (10:2 FTS)	< 0,1	0,07	LANDBOUW en NATUUR
N-methylperfluoroctaansulfonamide acetaat (MeFOSAA)	< 0,1	0,07	LANDBOUW en NATUUR
N-methylperfluoroctaansulfonamide (MeFOSA)	< 0,1	0,07	LANDBOUW en NATUUR
N-ethylperfluoroctaansulfonamide acetaat (EtFOSAA)	< 0,1	0,07	LANDBOUW en NATUUR
perfluoroctaansulfonamide (PFOSA)	< 0,1	0,07	LANDBOUW en NATUUR
8:2 polyfluoralkyl fosfaat diester (8:2 diPAP)	< 0,1	0,07	LANDBOUW en NATUUR
som PFOA	0,5	0,50	LANDBOUW en NATUUR
som PFOS	0,7	0,70	LANDBOUW en NATUUR
	Risicoindex		
PFOS- PFOA risicoindex	0,02019774		GEEN MENGSELTOXICITEI1