

maakt ontwikkelen mogelijk

Euromarkt te Alphen aan den Rijn

Milieuhygiënisch vooronderzoek Verkennend milieukundig bodemonderzoek (Indicatief) funderingsonderzoek

Kenmerk A5631-06/KHA/rap1

Datum 24 juni 2024

Opdrachtgever Euromarkt Development B.V.

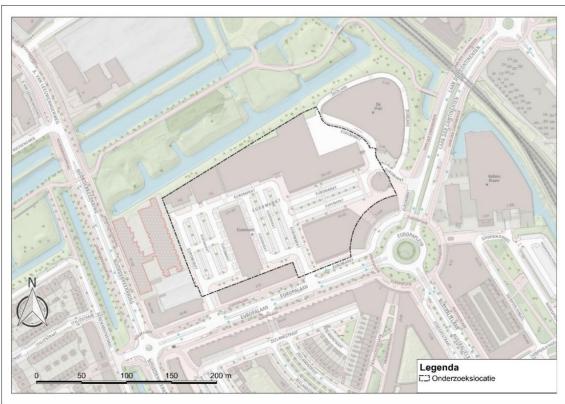
(Mees Ruimte & Milieu)

Stationsweg 27 6711 PJ Ede

Goedkeuring	Functie	Datum	Handtekening
(Adviseur milieu)	Opsteller, auteur	24-06-2024	
(Projectleider)	2º lezerschap en vrijgave	24-06-2024	

INHOUDSOPGAVE

1.	IN	ILEIDING	4
2.	М	ILIEUHYGIËNISCH VOORONDERZOEK	6
2	2.1	AANLEIDING VOORONDERZOEK	6
2	2.2	GEGEVENS ONDERZOEKSGEBIED	7
2	2.3	POTENTIËLE BRONNEN VAN BODEMVERONTREINIGING	8
2	2.4	BODEMKWALITEIT	9
2	2.5	ASBEST	9
2	2.6	BODEMOPBOUW EN GEOHYDROLOGIE	. 10
2	2.7	BEÏNVLOEDING	. 10
2	2.8	BODEMVERONTREINIGING	
2	2.9	TERREINVERKENNING	. 13
2	2.10	CONCLUSIES EN HYPOTHESESTELLING	. 13
3.	V	ERKENNEND BODEMONDERZOEK	. 16
3	3.1	ONDERZOEKSSTRATEGIE	. 16
3	3.2	UITVOERING VELDONDERZOEK	
3	3.3	UITVOERING LABORATORIUMONDERZOEK	. 19
3	3.4	TOETSINGSKADER	. 20
3	3.5	INTERPRETATIE	. 23
3	3.6	TOETSING HYPOTHESE	. 25
4.	(II	NDCATIEF) ONDERZOEK FUNDATIEMATERIAAL	
4	1.1	ONDERZOEKSOPZET	
4	1.2	VELDONDERZOEK	
4	1.3	LABORATORIUMONDERZOEK EN TOETSINGEN	. 27
5.	C	ONCLUSIES EN AANBEVELINGEN	
5	5.1	CONCLUSIES	
5	5.2	AANBEVELINGEN	. 30
6.	В	ETROUWBAARHEID	.32


BIJLAGEN

1.	Kaarten en tekeningen
1.1	Topografische kaart
1.2	Situatietekening
2.	Vooronderzoek
2.1	Rapportage Omgevingsdienst Midden-Holland
2.2	Fotoreportage
3.	Veldonderzoek
3.1	Formulieren veldonderzoek
3.2	Boorstaten en legenda
4. 4.1 4.2 4.3 4.4 4.5	Laboratoriumonderzoek Certificaat grond Certificaat grondwater Certificaat asbest grond Certificaat fundatiemateriaal asbest Certificaat fundatiemateriaal samenstellings- en uitlogingsonderzoek
5. 5.1 5.2 5.3 5.4	Toetsingstabellen Toetsingstabellen grond Toetsingstabellen grondwater Toetsing fundatiemateriaal samenstelling Toetsing fundatiemateriaal uitloging

1. INLEIDING

In opdracht van Euromarkt Development BV is door IDDS een milieuhygiënisch vooronderzoek en een verkennend milieukundig bodemonderzoek uitgevoerd. De onderzoekslocatie is gelegen aan de Euromarkt te Alphen aan den Rijn (afbeelding 1).

Afbeelding 1: Onderzoeksgebied (bron: OpenTopo)

Aanleiding en doelstelling

Het onderzoek is uitgevoerd in verband met de voorgenomen herontwikkeling van de locatie, waarbij de huidige bebouwing wordt gesloopt en nieuwbouw wordt geplaatst, en het uitvoeren van de activiteit 'Graven in de bodem (Besluit activiteiten leefomgeving (Bal) §4.119/§4.120)'.

De doelstelling van het onderzoek is om te bepalen of er in de grond en/of het grondwater ter plaatse van de onderzoekslocatie sprake is van een (sterke) verontreiniging.

Verklaring onafhankelijkheid

IDDS verklaart hierbij onafhankelijk te zijn van de opdrachtgever en geen belang te hebben bij de resultaten van het uitgevoerde onderzoek.

Milieuhygiënisch vooronderzoek

Voorafgaand aan een verkennend bodemonderzoek conform de onderzoeknorm NEN 5740:2023 dient een milieuhygiënisch vooronderzoek te worden uitgevoerd conform de onderzoeknorm NEN 5725:2023. Op basis van de informatie uit het vooronderzoek wordt een onderzoekshypothese geformuleerd.

Het doel van het vooronderzoek is inzicht te verkrijgen in de mogelijke aanwezigheid van verontreinigingen ter plaatse van de onderzoekslocatie. Hierbij wordt een inschatting gemaakt van de aard, mate, oorzaak en ligging van mogelijke verontreinigingen. Ook kunnen de resultaten van het vooronderzoek worden gebruikt bij de interpretatie van de resultaten van het bodemonderzoek.

Om dit doel te bereiken wordt relevante informatie over de onderzoekslocatie en eventueel de beïnvloeding vanuit de directe omgeving verzameld, geanalyseerd en geïnterpreteerd. De te verzamelen informatie is afhankelijk van de aanleiding en het doel van het vooronderzoek en heeft betrekking op locatiegegevens, bodemopbouw, geohydrologie, te verwachten bodemkwaliteit en potentieel bodembedreigende activiteiten op de locatie waar het vooronderzoek betrekking op heeft.

Verkennend bodemonderzoek

Ter bepaling van de milieuhygiënische bodemkwaliteit binnen de begrenzing van de onderzoekslocatie, is de onderzoeknorm NEN 5740:2023 gehanteerd. Deze norm beschrijft de werkwijze voor het opstellen van de onderzoeksstrategie bij een verkennend bodemonderzoek naar de (mogelijke) aanwezigheid van bodemverontreiniging en de werkwijze voor het bepalen van de milieuhygiënische kwaliteit van de bodem en eventueel vrijkomende grond.

Op basis van de informatie uit het milieuhygiënisch vooronderzoek wordt een onderzoekshypothese geformuleerd. Elke uit het milieuhygiënisch vooronderzoek resulterende onderzoekshypothese over de aan- of afwezigheid van bepaalde verontreinigende stoffen en de wijze van verspreiding wordt getoetst met een locatiespecifieke onderzoeksstrategie.

(Indicatief) funderingsonderzoek

De chemische kwaliteit van de vrijkomende fundering wordt indicatief vastgesteld door middel van analyse op asbest, minerale olie, PAK en PCB en bepaling van het uitlooggedrag. Het doel van het onderzoek is het verkrijgen van een indicatie van de hergebruiksmogelijkheden van de fundering.

Leeswijzer

In hoofdstuk 2 wordt het milieuhygiënisch vooronderzoek stapsgewijs besproken. Het milieuhygiënisch vooronderzoek bestaat achtereenvolgens uit het vaststellen van de aanleiding en de afbakening van het onderzoeksgebied. Vervolgens wordt informatie verzameld van de voorgeschreven onderzoekaspecten en worden de onderzoeksvragen beantwoord. Op basis hiervan worden conclusies getrokken en wordt de hypothese voor de onderzoekslocatie vastgesteld.

In hoofdstuk 3 wordt het verkennend bodemonderzoek stapsgewijs besproken. Als eerste stap wordt, op basis van de bij het milieuhygiënisch vooronderzoek voor de locatie vastgestelde hypothese, de onderzoeksstrategie vastgesteld. Vervolgens worden de uitvoering en resultaten van het veld- en laboratoriumonderzoek apart besproken. Op basis van de onderzoekresultaten wordt de vastgestelde hypothese getoetst.

In hoofdstuk 4 wordt het (indicatief) funderingsonderzoek besproken.

In hoofdstuk 5 zijn de conclusies van het onderzoek opgenomen en worden, indien van toepassing, aanbevelingen gedaan met betrekking tot eventueel te nemen vervolgstappen.

In hoofdstuk 6 wordt de betrouwbaarheid van het uitgevoerde onderzoek toegelicht.

2. MILIEUHYGIËNISCH VOORONDERZOEK

2.1 AANLEIDING VOORONDERZOEK

Afhankelijk van de aanleiding voor het verrichten van het vooronderzoek moet antwoord worden verkregen op een aantal onderzoeksvragen. Als eerste stap in het vooronderzoek dient derhalve de aanleiding te worden vastgesteld.

In de NEN 5725:2023 zijn acht aanleidingen tot vooronderzoek naar landbodems geformuleerd. Opgemerkt wordt dat er sprake kan zijn van een combinatie van meerdere aanleidingen. In dat geval dienen de onderzoeksvragen voor elke afzonderlijke aanleiding te worden beantwoord. Voor onderhavig onderzoek is de volgende aanleiding vastgesteld:

A. Uitvoeren van bodemonderzoek, saneren van een milieubelastende activiteit en/of realiseren van een gebouw op een bodemgevoelige locatie

De onderzoeksvragen, behorende bij de vastgestelde aanleiding, zijn in de verdere paragrafen in dit hoofdstuk in tabelvorm aangegeven. Per onderzoeksvraag is, direct onder de betreffende vraag, het antwoord opgenomen.

2.2 GEGEVENS ONDERZOEKSGEBIED

TABEL 2.2.1: Gegevens onderzoeksgebied

Onderzoeksgebied Wat is de afbakening van de onderzoekslocatie en is deze voldoende? **Uitwerking Bronnen** Situering Globale ligging: zie overzichtskaart 1.1 in bijlage 1. #1/#2/ Begrenzing onderzoekslocatie: zie situatietekening 1.2 in bijlage 1. #3 Adres Euromarkt Plaats Alphen aan den Rijn Gemeente Alphen aan den Rijn Omgevingsdienst Midden-Holland Omgevingsdienst Provincie Zuid-Holland RD-coördinaten Omschrijving Globaal middelpunt onderzoekslocatie X 104.567 Y 460.080 De locatie is op basis van de Omgevingsverordening niet Specifieke Provincie gebieden gelegen binnen een grondwaterbeschermingsgebied De locatie is, op basis van de Legger waterkeringen, niet Waterschap gelegen binnen de kern- of beschermingszone van een dijk of waterkering. Hoogte maaiveld Z Circa 1,2 m -NAP Kadastraal Gemeente Alphen aan den Rijn APN01 Gemeentecode Sectie Nummers 6634, 6635, 6636, 6642, 6843, 6845, 6848, 7154, 7155, 8042 (ged.), 8110 (ged.), 8725 en 8726 Oppervlaktes Totaal Ca. 31.660 m² Bebouwd Ca. 13.200 m² Verharding Uitpandig: geheel klinkers/tegels Inpandig: betonverharding (m.u.v. carwash) Belendingen Alle richtingen Rondom de locatie is sprake van bebouwing bestaande uit bedrijven en woningen. Ten westen is de Noorderkeerkring gelegen en ten zuiden de Europalaan. Afbeelding 2: Onderzoekslocatie en belendingen (bron: IDDS Projectenkaart) Afbakening VO 25 meter buiten onderzoekgrenzen Conclusie

Afbakening voldoende

#1: Perceelloep.nl / AHN.nl / WKOtool.nl

#2: Bodematlas Zuid-Holland / Legger Waterschap Rijnland

#3: IDDS Projectenkaart

Milieuhygiënisch vooronderzoek, verkennend bodemonderzoek en (indicatief) funderingsonderzoek Locatie: Euromarkt te Alphen aan den Rijn Kenmerk rapportage: A5631-06/KHA/rap1

2.3 POTENTIËLE BRONNEN VAN BODEMVERONTREINIGING

TABEL 2.3.1: Potentiële bronnen van bodemverontreiniging

Onderzoeksvraag

Is sprake van potentiële bronnen van bodemverontreiniging, zowel vanuit het verleden als het heden? Zo ja, wat zijn de potentiële bronnen van bodemverontreiniging, waar liggen ze en wat zijn de verdachte parameters?

Verkregen informa	tie	Bronnen
Voormalig gebruik	Op historisch kaartmateriaal is te zien dat de locatie van oudsher in poldergebied heeft gelegen en onbebouwd is geweest tot de jaren '90 van de vorige eeuw. Uit historische bronnen is bekend dat tijdens de 2e wereldoorlog er van noord naar zuid over het terrein een tankval, in een vermoedelijk toen al bestaande sloot, is gegraven. Deze tankval is vermoedelijk in de eind jaren '50 van de vorige eeuw gedempt. Het is bekend dat de 'oude' tankval is gedempt met grof vuil en dat het dempingsmateriaal sterk verontreinigd is met zware metalen, minerale olie, cyanide en PAK. Tevens is in het ondiepe grondwater een sterke cyanideverontreiniging aangetroffen.	#1 / #2
	Met het bouwrijp maken van de locatie rond de jaren '90 van de vorige eeuw is deze verontreinigde tankval ontdekt en zijn ook de toenmalige overige sloten op het terrein gedempt. Ter plaatse van enkele van deze sloten is dit materiaal beschreven als 'schone' grond welke vermoedelijk niet tot hooguit licht verontreinigd is.	
	Voor het bouwrijp maken en in het kader van de sanering is het gehele terrein opgehoogd. Mogelijk zijn enkele tot meerdere van de voormalige sloten gedempt met ditzelfde materiaal. Na het bouwrijp maken zijn het merendeel van de huidige panden gebouwd. Enkel de carwash is recenter in de jaren '10 van de huidige eeuw geplaatst.	
	Tevens heeft ten oosten van de locatie een slibzuiveringsinstallatie gelegen. Uit voorgaande onderzoeken is naar voren gekomen dat er mogelijk toemaakdek en zuiveringsslib vanuit deze installatie op het oostelijke deel van het huidige terrein zijn opgebracht.	
Potentiële bronnen en stoffen	Er is sprake van een ophooglaag en gedempte sloten. Beide zijn mogelijk met hetzelfde materiaal opgehoogd. Tevens heeft er op het terrein een voormalige tankval gelopen welke op een deel van het terrein is verontreinigd en gesaneerd.	
Huidig gebruik	In de huidige situatie is de locatie in gebruik als bouwmarkt met diverse winkelruimtes en een parkeerplaats.	
Potentiële bronnen en stoffen	In de huidige situatie zijn geen potentiële bronnen van bodemverontreiniging bekend.	
Toekomstig gebruik	Het gebruik van de locatie gaat gedeeltelijk veranderen. Op de locatie zal de huidige bebouwing worden gesloopt en er worden bedrijven en appartementen gerealiseerd.	-
Antwoord		

^{#1:} Omgevingsdienst Midden-Holland; Omgevingsrapportage (opgenomen in bijlage 2) #2: Topotijdreis.nl

BODEMKWALITEIT 2.4

TABEL 2.4.1: Bodemkwaliteit

Onderzoeksvraag

Welke kwaliteitsklasse is toegekend aan de bodem in de bodemkwaliteitskaart en welke lagen zijn daarbij onderscheiden?

Verkregen informa	tie		Bronnen
Bodemkwaliteit	Bodemkwaliteitszone	B19/O19 Kantoren, bedrijven na 1990 en kassen	#1
	Stoffen met P95 >IW binnen de zone?	Geen	
		Bovengrond (0,0 - 0,5 m-mv) : Landbouw/natuur Ondergrond (0,5 - 2,0 m-mv) : Landbouw/natuur	
	Ontgravingskwaliteit boven- en ondergrond PFAS	Landbouw/natuur	

Antwoord

De locatie is gelegen binnen Bodemkwaliteitszone B19/O19 Kantoren, bedrijven na 1990 en kassen. Uit de statische gegevens die ten grondslag liggen aan de bodemkwaliteitskaart blijkt dat de in de grond de 95-percentielwaarde voor geen enkele stof de interventiewaarde bodem wordt overschreden.

#1: Omgevingsdienst Midden-Holland; Nota bodembeheer Midden-Holland 2023

2.5 **ASBEST**

TAREL 2.5.1: Achost

Is de bodem asbestverdac	ht?	
Verkregen informatie		Bronnen
Bebouwingsgeschiedenis	De locatie is voor het eerst bebouwd in de jaren '90 van de vorige eeuw. Vanwege het bouwjaar is het niet meer zo aannemelijk dat in/op/aan het pand asbesthoudende materialen zijn gebruikt.	#1 / #2 / #3
Bodembouw	, ,	

Vanuit de bebouwings- en gebruiksgeschiedenis van de locatie is het niet ondenkbaar dat een bodemverontreiniging met asbest is ontstaan. Vooralsnog wordt de locatie als niet asbestverdacht beschouwd. Opgemerkt wordt dat, indien in de bodem sprake is van bijmengingen met puin, de locatie als asbestverdacht wordt aangemerkt.

- #1: BAG-viewer
- #2: NEN5725:2023, bijlage A
- #3: Topotijdreis.nl
- #4: Omgevingsdienst Midden-Holland; Omgevingsrapportage (opgenomen in bijlage 2)

2.6 BODEMOPBOUW EN GEOHYDROLOGIE

TABEL 2.6.1: Bodemopbouw en geohydrologie

Onderzoeksvraag

Wat is de bodemopbouw en geohydrologie en is er binnen het onderzoeksgebied sprake van verschillende fysische kwaliteiten en/of bodemvreemde lagen? Zo ja, welke fysische kwaliteiten en/of bodemvreemde lagen zijn er en waar bevinden deze zich?

Verkregen informatie						
Bodemopbouw (lokaal)	0,0 - 1,0 m-mv Zand (antropogene ophooglaag)					
	1,0 - 5,0 m-mv	Klei met sporadisch veen				
Grondwater (lokaal)	Grondwaterstand freatisch	Circa 0,7 m-mv				
	Een eenduidige stromingsrichting van het grondwater is niet bekend. De stromingsrichting zal lokaal worden beïnvloed door objecten in de ondergrond.					
	Voor zover bekend wordt het grondwater op en in de nabijheid van de onderzoekslocatie niet beïnvloed door menselijk handelen (drainage, bemalingen, etc.).					
Geohydrologie	0,0 - 2,0 m-mv	0,0 - 2,0 m-mv Deklaag				
	2,0 - 42,0 m-mv	1 ^e watervoerend pakket]			
	42,0 - 46,0 m-mv 1e scheidende laag					
	Stromingsrichting 1e WVP Zuidelijk					
Bodemvreemde lagen	De reeds genoemde ophooglaag en gedempte sloten. Tevens kan mogelijk plaatselijk onder de klinker- en tegelverharding een funderingslaag aanwezig zijn.					

Antwoord

Ter plaatse van een groot gedeelte van de onderzoekslocatie kan sprake zijn van bodemvreemde lagen ten gevolge van de ophooglaag, gedempte sloten en mogelijk plaatselijk aanwezige funderingslaag.

#1: DINOloket.nl

#2: Bodematlas provincie Zuid-Holland / Archief IDDS

#3: WKOtool.nl

2.7 BEÏNVLOEDING

TABEL 2.7.1: Beïnvloeding

ls sprake van beïnvloed welke beïnvloeding en	ding vanuit de omgeving van de bodemkwaliteit of de kwaliteit van het grondwater waar?	? Zo ja,
Verkregen informatie		Bronnen
Beïnvloeding	Er wordt op basis van de beschikbare informatie geen beïnvloeding vanuit de omgeving verwacht.	#1 / #2
	De cyanideverontreiniging in het grondwater ter plaatse van de gedempte tankval is geheel verwijderd bij de sanering.	
Antwoord		

#1: Bodemloket.nl

#2: Omgevingsdienst Midden-Holland; Omgevingsrapportage (opgenomen in bijlage 2)

2.8 BODEMVERONTREINIGING

TABEL 2.8.1: Bodemverontreiniging

Onderzoeksvraag

Wordt op de locatie of een deel daarvan een geval van ernstige bodemverontreiniging of een sterke verontreiniging (boven interventiewaarde) vermoed? Zo ia. waar bevindt deze zich?

Verkregen informatie Bronnen

Geval/verontreiniging ter plaatse van de locatie

Verwachting

Er zijn wel Besluiten ingevolge de Wet bodembescherming bekend voor de locatie Europlaan (plangebied Kerk en Zanen). Hieronder wordt de verontreiniging en de navolgende sanering besproken:

#1 / #2

Europalaan (plangebied Kerk en Zanen)

In de begin jaren '90 van de vorige eeuw zijn enkele bodemonderzoeken uitgevoerd waaruit is gebleken dat de toplaag op het oostelijk deel van het terrein plaatselijk matig verontreinigd was met koper, lood en zink en licht verontreinigd met barium, kwik en PAK (als gevolg van opgebracht toemaakdek en zuiveringsslib). Lokaal was op het noordelijke deel van het terrein een matige verontreiniging met minerale olie in de grond aangetroffen. Uit de onderzoeken bleek tevens dat het grondwater ter plaatse sterk verontreinigd was met barium, matig met lood en zink en licht met arseen, nikkel, tin, chroom en vluchtige aromaten.

Voor het bouwrijp maken van het terrein voor de bouw van de huidige bebouwing was toen besloten het terrein te egaliseren en de olieverontreiniging uit te graven. Bij het ontgraven van de olieverontreiniging bleek dat deze verontreiniging voorkwam in een gedempte tankval (nl. aanwezigheid grof vuil). Vanwege de geplande verkoop van het perceel ten behoeve van de bestemming detailhandel met bovenwoningen, is besloten de verontreiniging ter plaatse te verwijderen en een tijdelijk gronddepot aan te leggen.

In 1993 is een evaluatie opgesteld van de grond- en grondwatersanering in het deelgebied A1 (Apron) in de polder Kerk en Zanen uitgevoerd door Tukkers BV (2332, d.d. 14 januari 1993). Hierin is het volgende beschreven:

Als saneringsvariant is gekozen voor verwijdering van de aangetroffen olievlek en het egaliseren van het overige deel van het terrein (vanwege de lokale hoogteverschillen) met de bovenste laag (tot maximaal 40 cm.), waarna een zandpakket van een meter werd opgebracht en de omringende sloot werd gedempt. Vervolgens zou het merendeel van het terrein verhard met (waarschijnlijk) klinkers worden.

In 1991 is een start gemaakt met de verwijdering van de olieverontreiniging en de egalisering (inclusief slootdemping). Tijdens de graafwerkzaamheden werd duidelijk, dat er ter plaatse van de olieontgraving onder andere huisvuil was gestort in een voormalige tankval/sloot. Uit verder onderzoek bleek, dat er sprake was van demping van de voormalige tankval/sloot over de gehele lengte, (noord/zuid), met een totaalvolume van ca. 1600 m³, waarin grof vuil was gestort. De grond in de gedempte tankval was op diverse plaatsen sterk verontreinigd met lood en kwik. Daarnaast was lokaal een matige verontreiniging met zink, koper, minerale olie, cyanide en PAK vastgesteld. De bodem van de tankval was niet verontreinigd met minerale olie. De verontreiniging is beperkt gebleven tot het dempingsmateriaal en heeft zich (nog) niet verder verspreid. In het ondiepe grondwater was een sterke cyanideverontreiniging aangetroffen (210 ug/l). Verder was de referentiewaarde overschreden voor de parameters arseen, chroom en vluchtige aromaten. De gehalten aan verontreinigingen en het uitlooggedrag zijn van dien aard, dat het grondwater in de gedempte tankval ook gesaneerd diende te worden. De laatste deelsanering is hierna uitgevoerd waarbij eerst ontgraving van de verontreinigde grond en daarna aanvulling met schoon zand heeft plaatsgevonden. Hierna is de grondwatersanering uitgevoerd.

Er werd bij de nazorg aangegeven dat aan de zuidelijke kant van de weg de voormalige tankval nog doorloopt en dat daar mogelijk nog een restverontreiniging aanwezig is.

Onbekend is of de verontreinigde tankval mogelijk nog verder op het zuidelijke terreindeel nabij de weg aanwezig is. Tevens is vooralsnog nog onbekend waar de voormalige tankval en de sanering precies hebben gelegen /plaatsgevonden. Aan de hand van diverse bronnen, waaronder de tekening van de saneringsevaluatie, de atlas van de Omgevingsdienst Midden-Holland, oud kaartmateriaal en historische luchtfoto's, heeft de tankval potentieel op meerdere locaties gelegen. In bijlage 2 zijn de locaties op de tekeningen weergegeven.

In het slib van de aanwezige sloten was een matige verontreiniging met kwik en een lichte verontreiniging met PAK aangetoond. Deze sloten zijn met het bouwrijp maken rond 1991 gedempt. Er was in overleg met de provincie Zuid-Holland besloten dat indien de in het slib aanwezige kwik niet uitloogt het slib kan blijven liggen (en niet gesaneerd hoeft te worden). Uit de uitloogtest bleek dat het kwik niet uitloogt. Op grond hiervan kan gesteld worden, dat het in het slib aangetroffen kwik zich niet zal verspreiden naar het grondwater. Dit betekende, dat deze sloot gedempt kon worden, zonder het slib te verwijderen.

Euromarkt 151

In 2018 is een grondwatermonitoring bij de XXL Carwash uitgevoerd. Ter plaatse van een olie-benzine-afscheider is een peilbuis geplaats en geanalyseerd op minerale olie en vluchtige aromaten. Er is zintuiglijk geen verontreiniging met olieproduct waargenomen. Er zijn geen verhoogde gehalten aangetoond.

Geval/verontreiniging in de directe omgeving van de locatie

Verwachting

Er zijn geen Besluiten ingevolge de Wet bodembescherming bekend voor locaties in de directe omgeving van de onderzoekslocatie bekend.

Noorderkeerkring 20 (direct ten westen van locatie)

In 2020 is door IDDS een verkennend bodemonderzoek uitgevoerd (2004N618/PMU/rap1, d.d. 22-07-2020). In de grond zijn plaatselijk bijmengingen met bodemvreemde materialen aangetroffen (beton, baksteen en metselpuin). Visueel is geen asbestverdacht materiaal waargenomen. De grond is niet verontreinigd. Het grondwater is licht verontreinigd met barium, nikkel en naftaleen. De grond kan, indien vergelijkbare resultaten worden gemeten tijdens een officiële partijkeuring AP04, worden geclassificeerd als zijnde 'klasse wonen/industrie'.

In 2019 is door SGS een verkennend bodem- en asbestonderzoek uitgevoerd (25.19.00079.1, d.d. 21-03-2019). De bovengrond is licht verontreinigd met PCB. De ondergrond is niet verontreinigd met een van de geanalyseerde parameters. In het grondwater zijn licht verhoogde gehaltes aan nikkel en barium gemeten. In het grondwater is reeds in 2004 een sterke verontreiniging met arseen en nikkel aangetroffen. Deze verontreiniging is in het verleden voldoende onderzocht. De verhoogde concentraties aan arseen en zink kunnen toegeschreven worden aan een natuurlijke verhoogde achtergrondwaarde. De verhoogde concentraties leveren verder geen beperkingen op voor het huidig gebruik van de locatie. Verder onderzoek naar deze verontreiniging wordt derhalve niet zinvol geacht. Zowel zintuiglijk als analytisch is geen asbest aangetoond in de bodem.

Laan der Continenten (Da Vinci) (direct ten oosten van de locatie)

In 2005 is door Syncera De Straat B.V. een verkennend bodemonderzoek en waterbodemonderzoek uitgevoerd. De bovengrond was licht verontreinigd met diverse zware metalen, PAK, minerale olie en EOX. De ondergrond was licht verontreinigd met kwik, PAK minerale olie en EOX. Het (zintuiglijk schone) dempingsmateriaal ter plaatse van de gedempte sloot was niet verontreinigd met de onderzochte parameters. Vermoedelijk was de sloot gedempt met schone grond. Het grondwater was licht verontreinigd met arseen, chroom, nikkel en naftaleen. In de onderzochte watergang was klasse 2 baggerspecie aangetroffen.

NS-emplacement (ten oosten van de locatie)

In 2006 is een verkennend bodemonderzoek uitgevoerd door RPS. De bovengrond was over het algemeen licht verontreinigd met zware metalen, minerale olie en PAK. Zeer plaatselijk was de bovengrond matig verontreinigd met PAK. De ondergrond was hooguit licht verontreinigd met zware metalen en PAK. Mede omdat de meting heeft plaatsgevonden in een individueel monster en in de overige grondmonsters van deze deellocatie licht verhoogde gehalten aan PAK zijn gemeten, wordt geen aanvullend onderzoek nodig geacht.

#1 / #2

Antwoord

Ter plaatse van de onderzoekslocatie zijn in het verleden enkele bodemonderzoeken uitgevoerd. Hieruit is gebleken dat de grond in het oostelijk deel van de locatie (nabij de voormalige zuiveringsinstallatie) matig verontreinigd was met zware metalen. Tevens heeft door de locatie een voormalige tankval gelopen welke op een groot deel gedempt is met grof vuil en daardoor sterk verontreinigd was met lood en kwik, en matig verontreinigd met zink, koper, minerale olie, cyanide en PAK. Tevens was in het grondwater een sterke cyanideverontreiniging aangetroffen. De verontreinigde tankval is gesaneerd waarbij de verontreinigingen volledig zijn verwijderd. Vooralsnog is onbekend of op het zuidelijke deel van het terrein (nabij de weg) de verontreinigde tankval nog aanwezig is en waar deze precies heeft gelegen.

#1: Omgevingsdienst Midden-Holland; Omgevingsrapportage (opgenomen in bijlage 2)

#2: Archief IDDS

2.9 TERREINVERKENNING

De terreinverkenning heeft tot doel om te controleren of de gedocumenteerde informatie overeenkomt met de daadwerkelijke situatie ter plaatse en deze aan te vullen met relevante waarnemingen.

De terreinverkenning is op 21 mei 2024 uitgevoerd. Op basis van de terreinverkenning blijkt geen sprake te zijn van aanvullende bijzonderheden en hebben zich geen wijzigingen voorgedaan ten opzichte van de reeds verkregen gegevens.

Ter illustratie is in bijlage 2 een fotoreportage opgenomen.

2.10 CONCLUSIES EN HYPOTHESESTELLING

Alle binnen het vooronderzoek geraadpleegde bronnen zijn als betrouwbaar beoordeeld.

Uit de beantwoording van de verschillende onderzoeksvragen zijn conclusies getrokken over de verwachte milieuhygiënische bodemkwaliteit en mogelijk aanwezige verontreinigende stoffen.

Conclusies

- Op basis van de beschikbare representatieve bodeminformatie uit de Bodemkwaliteitskaart wordt ter plaatse van de onderzoekslocatie geen (sterke) bodemverontreiniging met reguliere stoffen verwacht;
- Uit het vooronderzoek is gebleken dat op de locatie zich een (sterke) verontreiniging in grondwater en/of grond kan bevinden, te weten:
 - Het terrein is bij het bouwrijp maken opgehoogd. Deze opgehoogde grond is als verdacht aangemerkt op het voorkomen van verontreinigingen met zware metalen en/of PAK in de grond;
 - Op het oostelijke deel van het terrein zijn mogelijk (sterk) verhoogde gehalten aan zware metalen aanwezig in het kader van een toemaakdek en opgebracht zuiveringsslib (afkomstig van de voormalige zuiveringsinstallatie naast de locatie);
 - Bij het bouwrijp maken zijn tevens enkele sloten gedempt. Onbekend is met welk materiaal de sloten zijn gedempt en wat de kwaliteit van het dempingsmateriaal is. Mogelijk zijn één tot meerdere van deze sloten gedempt met hetzelfde materiaal als waarmee het terrein is opgehoogd;

Ter plaatse van de voormalige (gedempte) tankval is als gevolg van het dempen hiervan een verontreiniging met zware metalen, minerale olie, PAK en cyanide ontstaan. Deze verontreiniging is op het grootste deel van het terrein geheel gesaneerd. Vooralsnog is niet geheel bekend of het zuidelijke deel van het terrein (nabij de weg) ook nog verontreinigd is of dat dit deel niet gedempt is met verontreinigd materiaal.

Uit de voorgaande conclusies blijkt dat in de bodem van de locatie één of meerdere (sterke) verontreinigingen worden verwacht. Het uitvoeren van een verkennend bodemonderzoek wordt om die reden noodzakelijk geacht. In de navolgende tabel(len) worden de hypothese en te volgen onderzoeksstrategie per onderdeel vermeldt. De hypothese en onderzoeksstrategie zijn complementair aan elkaar.

TABEL 2.10.1: Hypothese en onderzoeksstrategie

	se en onderzoeksstrategie
Locatie	Gehele onderzoekslocatie
Hypothese	De (boven)grond van het terrein kan als gevolg van de aangebrachte ophooglaag heterogeen diffuus zijn verontreinigd met zware metalen en/of PAK. Tevens is op het oostelijk deel van het terrein het voormalige maaiveld (huidige ondergrond) mogelijk verontreinigd met zware metalen door het toemaakdek/slibzuiveringsinstallatie.
Norm	NEN 5740:2023
Onderzoeksstrategie	Onderzoeksstrategie voor een verdachte locatie, diffuse bodembelasting, heterogeen verdeelde verontreiniging op schaal van monsterneming (VED-HE)
Opmerking	In afwijking van de NEN;5740 zijn in het mengmonster van de diepere ondergrond meer deelmonsters opgenomen dan is toegestaan voor een verdachte locatie om een beter beeld te krijgen van de milieuhygiënische kwaliteit van de ondergrond op de gehele locatie. Op basis van de waarnemingen ten tijde van de veldwerkzaamheden is de diepere ondergrond onverdacht op het voorkomen van bodemverontreiniging.
Locatie	Voormalige (gedempte) tankval
Hypothese	De grond en het grondwater ter plaatse van de voormalige (gedempte) tankval zijn als gevolg van het dempen hiervan verontreinigd geraakt met zware metalen, minerale olie, PAK en cyanide. Deze verontreiniging is op het grootste deel van het terrein geheel gesaneerd. Vooralsnog is niet geheel bekend of het zuidelijke deel van het terrein (nabij de weg) ook nog verontreinigd is of dat dit deel niet gedempt is met verontreinigd materiaal.
	Tevens wordt geverifieerd of ter plaatse van het gesaneerde deel nog aanwijzingen zijn voor de voormalige tankval en/of na te gaan of deze daadwerkelijk geheel gesaneerd is.
Norm	Eigen strategie
Onderzoeksstrategie	In eerste instantie worden enkele boringen gezet ter plaatse van het gebied dat vooralsnog nog verdacht is op de aanwezigheid van de voormalige (gedempte) tankval en een daaraan gerelateerde potentiële verontreiniging. Omdat niet duidelijk is waar deze tankval exact heeft gelegen (de evaluatie van de sanering, de atlas van Midden-Holland, historisch kaartmateriaal en historische luchtfoto's zeggen allen iets anders) worden aanvullende boringen geplaatst om de exacte ligging hiervan zo goed mogelijk in kaart te brengen. Teven worden enkele boringen gezet ter plaatse van het gesaneerde deel van de voormalige

Locatie	Gedempte sloten
Hypothese	Er zijn in het verleden diverse sloten gedempt op het terrein. Er dient te worden na te gaan of deze gedempt zijn met verontreinigd materiaal of met hetzelfde materiaal als waarmee het terrein is opgehoogd. De gedempte sloten kunnen potentieel verontreinigd zijn met zware metalen en PAK.
Norm	NEN 5740:2023
Onderzoeksstrategie	Onderzoeksstrategie voor een verdachte locatie met een duidelijke plaatselijke kern van bodembelasting (VEP)
Opmerking	Er wordt pas een peilbuis geplaatst wanneer de demping wordt aangetroffen of als daar zintuiglijk aanleiding tot wordt gezien.

3. VERKENNEND BODEMONDERZOEK

3.1 ONDERZOEKSSTRATEGIE

Het onderzoek is uitgevoerd conform de hierna aangegeven onderzoeknorm en onderzoekstrategie.

Onderzoeknorm : NEN 5740:2023; Landbodem - Strategie voor het uitvoeren van

verkennend bodemonderzoek - Onderzoek naar de milieu-

hygiënische kwaliteit van bodem en grond.

Onderzoeksstrategie : Onderzoeksstrategie voor een diffuus belaste niet-lijnvormige

locatie met een heterogeen verdeelde bodembedreigende stof

op schaal van monsterneming (VED-HE-NL).

Opmerking : Opgemerkt wordt dat in onderhavig onderzoek geen inpandige

boringen zijn uitgevoerd. Uit het vooronderzoek is naar voren gekomen dat de locatie bij het bouwrijp maken is opgehoogd en direct hierna de bebouwing op is aangebracht. Tevens hebben

ter plaatse van de bebouwing sindsdien geen

bodembedreigende activiteiten plaatsgevonden op de locatie welke de locatie mogelijk negatief hebben beïnvloed. Bovendien is het uitpandige terrein intensiever gebruikt dan het bebouwde. Derhalve kan worden gesteld dat de kwaliteit van de grond en het grondwater onder de bebouwing niet slechter zal zijn dan de

kwaliteit op het uitpandige terrein.

3.2 UITVOERING VELDONDERZOEK

Een samenvatting van de tijdens het veldonderzoek uitgevoerde werkzaamheden is opgenomen in de navolgende tabel. De posities van de genoemde meetpunten zijn weergegeven op situatietekening 1.2 die in bijlage 1 is opgenomen.

TABEL 3.2.1: Samenvatting veldonderzoek

Uitvoeringsperiode	21 t/m 23	21 t/m 23 en 29 mei 2024 (2001) 29 mei 2024 (2002)								
Uitvoerende partij		Bodem Expert en IDDS Milieu (2001) IDDS Milieu (2002)								
BRL SIKB / protocol		BRL SIKB 2000 Protocol 2001, 2002								
Onderzoekaspect	Meetpunt	en		Codering	Bijzonderheden					
	Туре	Diepte [m-mv]	Aantal							
Gehele terrein	Boring	1,0-1,1	23	01, 02, 03, 07, 08, 09, 10, 12, 14, 17, 18, 19, 23, 25, 26, 28, 35A, 37, 39, 40, 44, 47	*					
		2,0	9	04, 05, 15, 21, 29, 30, 36, 41, 46						
		3,0	8	06, 13, 16, 22, 38, 43, 48, 49						
		5,0	1	20						
	Peilbuis	2,5	3	11, 42, 45						
		3,0	1	24						
Voormalige (gedempte) tankval	Boring	3,5-4,0	9	31, 32, 32A, 33, 33A, 34, 34A, 35	***					
	Peilbuis	3,5	1	31A						
Gedempte sloten	Raai	1,5	8	27, 50 t/m 57	**					

^{*}boring 20 is dieper doorgezet tot 5,0 m-mv in het kader van het potentieel afwerken van deze boring met een peilbuis en de afwezigheid van het grondwater. Uiteindelijk is besloten geen peilbuis te plaatsen ter plaatse van boring 20, maar in plaats daarvan boring 24 af te werken met peilbuis.

Uitvoeringswijze

Tijdens het veldonderzoek is niet afgeweken van de beoordelingsrichtlijn. Tijdens de grondwatermonstername is peilbuis 42 belucht. Derhalve is het grondwater ter plaatse van deze peilbuis niet geanalyseerd omdat wordt aangenomen dat de kwaliteit hiervan niet representatief is voor het onderzoek. Gezien er meer peilbuizen dan wordt voorgeschreven conform de NEN 5740 zijn gezet verspreid over het onderzoeksgebied wordt ervanuit gegaan dat de kwaliteit van het grondwater met deze peilbuizen in afdoende mate in beeld wordt gebracht. In plaats van peilbuis 42 wordt peilbuis 31A, welke (aanvullend) is geplaatst ter plaatse van de voormalige (gedempte) tankval, geanalyseerd op een standaardpakket grondwater (naast de analyse op cyanide). Hiermee wordt aan het conform aantal analyses grondwater voor de NEN 5740 voldaan.

Het veldverslag met daarin de gegevens van het veldwerkbureau en de namen van de veldwerkers is opgenomen in bijlage 3. Het procescertificaat en het hierbij behorende keurmerk zijn van toepassing op de activiteiten met betrekking tot het veldonderzoek en de overdracht van de monsters, inclusief de daarbij behorende veldwerkregistratie aan een erkend laboratorium of aan de opdrachtgever.

Tijdens het verrichten van het veldonderzoek is de bodem zintuiglijk beoordeeld op de mogelijke aanwezigheid van verontreinigingen en is de bodemopbouw beschreven.

Bodemopbouw

Per meetpunt is de texturele, minerale en organische samenstelling van de bodem nauwkeurig beschreven. Op basis van deze beschrijving is per meetpunt een boorstaat vervaardigd. De boorstaten zijn opgenomen in bijlage 3.

^{**}ter plaatse van boringen 35A, 46, 47 en 53 zijn asbestgaten gegraven in het kader van de aangetroffen bijmengingen met puin en is de puinhoudende grond bemonsterd.

^{***}de boringen die worden gezet voor de voormalige (gedempte) tankval en de gedempte sloten worden, waar mogelijk, zoveel mogelijk gecombineerd met de boringen voor het gehele terrein.

De globale opbouw van de bodem ter plaatse van de gehele onderzoekslocatie, gebaseerd op de boorstaten, wordt als volgt omschreven:

- De (boven)grond bestaat uit zand tot ca. 1,0 m-mv. Dit betreft vermoedelijk de opgebrachte ophooglaag;
- De ondergrond (vanaf 1,0 m-mv) bestaat tot de geboorde dieptes van maximaal 5,0 m-mv overwegend uit klei. Zeer plaatselijk zijn veenlagen in de klei aanwezig.

Zintuiglijk waargenomen bijzonderheden

Het opgeboorde bodemmateriaal is visueel geïnspecteerd op afwijkingen en op het voorkomen van bodemvreemde bijmengingen die kunnen duiden op een mogelijke verontreiniging van de bodem. Het materiaal is met name beoordeeld op de aard, grootte en gradatie van voorkomen. Sommige verontreinigingen die in de bodem aanwezig zijn, kunnen aan de geur herkend worden. Benadrukt dient te worden dat, indien tijdens de veldwerkzaamheden passieve geurwaarnemingen worden gedaan, deze gekarakteriseerd worden en per boorpunt worden beschreven.

Indien er sprake is van afwijkingen en/of bijmengingen zijn deze, per meetpunt en per bodemlaag, aangegeven in de boorstaten die zijn opgenomen in bijlage 3. Op basis van de boorstaten blijkt in hoofdlijnen het navolgende:

- In de grond is plaatselijk sprake van bijmengingen met bodemvreemde materialen. Het betreft met name sporen baksteen in de zandige ophooglaag en zeer plaatselijk in de direct onder de ophooglaag liggende kleilaag;
- Zeer plaatselijk is sprake van een matige bijmengingen puingranulaat en puin ter plaatse van boring 35 (en 35-A) op een diepte van 0,25 tot 0,56 m-mv en een sterke bijmenging met puingranulaat en brokken puin ter plaatse van boring 48 op een diepte van 0,6 tot 1,0 m-mv:
- Ter plaatse van de voormalige (gedempte) tankval is bij het gesaneerde deel geen duidelijke afwijkende bodemopbouw waargenomen. Tevens is bij het onbekende deel ook geen afwijkende bodemopbouw waargenomen. Wel is nabij de voormalige tankval ter plaatse van boring 35 in de grond puin aangetroffen. Of dit gerelateerd is aan de tankval is niet te zeggen;
- Ter plaatse van de gedempte sloten is geen afwijkende bodemopbouw noch aanwijzingen voor de voormalige sloten (slib- of rietresten) waargenomen;
- Hoogstwaarschijnlijk zijn de voormalige sloten en het zuidelijk deel van de voormalige tankval (welke niet gesaneerd is) gedempt met dezelfde grond als waarmee het terrein is opgehoogd. Het gesaneerde deel van de voormalige tankval is tevens vermoedelijk met vergelijkbaar materiaal als de ophooglaag aangevuld;
- Onder de klinkerverharding is zeer plaatselijk sprake van funderingslagen bestaande uit repac en puingranulaat met beton. Deze lagen bestaan voor meer dan 50% uit bodemvreemde materialen en vallen buiten de invloedsferen van toetsingskader Omgevingswet voor bodem.

Ashest

Het veldonderzoek is uitgevoerd door veldwerkers welke zijn opgeleid voor het herkennen van asbestverdachte materialen. Tijdens de uitvoering van het bodemonderzoek is het maaiveld van de onderzoekslocatie, evenals het opgeboorde bodemmateriaal visueel beoordeeld op de aanwezigheid van asbestverdachte materialen (fractie > 20 mm).

Indien asbestverdacht materiaal is aangetroffen is dit, per boorpunt en per bodemlaag, aangegeven in de boorstaten die zijn opgenomen in bijlage 3. Op basis van de visuele inspectie op asbest blijkt het navolgende:

- Op het maaiveld en in de opgeboorde grond is visueel geen asbestverdacht materiaal (fractie > 20 mm) aangetroffen;
- De bijmengingen met puingranulaat en puin zijn formeel gezien verdacht aan te merken op asbest. Van de betreffende bodemlagen ter plaatse van boringen 35A en 48 zijn monster genomen welke (indicatief) geanalyseerd worden op asbest om een indicatie te verkrijgen van de aan- of afwezigheid van asbest in de bodem.

Grondwater

Voorafgaand aan de bemonstering van het grondwater is de actuele grondwaterstand opgenomen ten opzichte van het maaiveld. Van het bemonsterde grondwater is in het veld de zuurgraad (pH), het elektrisch geleidingsvermogen (EC) en de mate van troebelheid (NTU) gemeten. Het bemonsterde grondwater is zintuiglijk beoordeeld op eventuele afwijkingen die kunnen duiden op een bodemverontreiniging.

In de navolgende tabel zijn de resultaten opgenomen van de uitgevoerde metingen en verrichtte waarnemingen.

TABEL 3.2.2: Metingen uitgevoerd aan het grondwater

Peilbuis	Filterstelling	Grondwater- stand	pH	EC	Troebel- heid	Monster- name	Zintuiglijke afwijkingen / overige bijzonderheden
	[m-mv]	[m-mv]	[-]	[µS/cm]	[NTU]	d.d.	
11-1-1	1,50 - 2,50	0,78	5,8	1008	45,37	29-05-2024	Geen bijzonderheden
24-1-1	2,00 - 3,00	0,62	5,9	988	67	29-05-2024	Geen bijzonderheden
31A-1-1	1,50 - 2,50	0,92	5,8	787	492	29-05-2024	Geen bijzonderheden
42-1-1	1,50 - 2,50	0,66	6,4	843	62	29-05-2024	Belucht
45-1-1	1,50 - 2,50	0,57	6,4	762	247	29-05-2024	Geen bijzonderheden

Op basis van de veldwaarnemingen en metingen blijkt het navolgende:

- Aan het bemonsterde grondwater zijn geen afwijkingen waargenomen die kunnen duiden op een eventuele bodemverontreiniging;
- De gemeten waarden voor de zuurgraad en het elektrisch geleidingsvermogen duiden niet op een eventuele verontreiniging van het grondwater;
- Opgemerkt wordt dat de troebelheid sterk verhoogd is ten opzichte van de natuurlijke troebeling die maximaal 10 NTU bedraagt. De hoge troebeling duidt op de aanwezigheid van veel onopgeloste bestanddelen (colloïden);
- Peilbuis 42 is belucht zoals ook eerder in paragraaf 3.2 bij uitvoeringswijze is besproken.

3.3 UITVOERING LABORATORIUMONDERZOEK

Voor de verrichting van het chemisch onderzoek zijn de monsters overgebracht naar een (RvA) geaccrediteerd en AS3000 erkend laboratorium. De naam en contactgegevens van het betreffende laboratorium, alsmede de data waarop de monstervoorbehandeling en het analytisch onderzoek is uitgevoerd, zijn aangegeven op de analysecertificaten die in bijlage 4 zijn opgenomen.

Analysestrategie

Bij de selectie van de grond(meng)monsters is, voor het verkrijgen van een representatief beeld van de milieuhygiënische kwaliteit van de bodem, rekening gehouden met de bodemopbouw en eventuele zintuiglijk waargenomen afwijkingen. Voor het verkrijgen van een ruimtedekkend beeld is eveneens rekening gehouden met de situering van de boringen. In tabel 3.4.1 is een overzicht gegeven van de monsters, waar van toepassing de monstersamenstelling, de monstertrajecten en de uitgevoerde analyses.

Samenstelling analysepakketten

In het standaardpakket voor grond zijn de volgende analyses opgenomen:

- Zware metalen (barium, cadmium, kobalt, koper, kwik, lood, molybdeen, nikkel en zink).
- PAK (polycyclische aromatische koolwaterstoffen).
- Minerale olie (GC).
- PCB (PolyChloorBifenylen).

Aanvullend is de grond ter plaatse van de voormalige tankval op cyanide geanalyseerd.

Ten behoeve van de toetsing van de analyseresultaten zijn van alle grondmonsters de percentages lutum en/of organische stof bepaald.

In het standaardpakket voor grondwater zijn de volgende analyses opgenomen:

- Zware metalen (barium, cadmium, kobalt, koper, kwik, lood, molybdeen, nikkel en zink).
- BTEXNS (benzeen, tolueen, ethylbenzeen, xylenen, naftaleen en styreen).
- VOCI (vluchtige organochloorverbindingen).
- Minerale olie.

Aanvullend is het grondwater ter plaatse van peilbuis 31A bij de voormalige tankval op cyanide geanalyseerd.

Asbest

Aanvullend zijn monsters van de grond met puingranulaat en puin geanalyseerd op (het voorkomen van) asbest. Opgemerkt wordt dat deze bepaling op indicatieve basis is uitgevoerd, en enkel een uitspraak kan worden gedaan over de aan- of afwezigheid van asbest in het betreffende monster. Dit resultaat geeft onzes inziens een representatieve indicatie van wat eventueel in de bodem te verwachten is.

3.4 TOETSINGSKADER

De resultaten van de chemische analyses zijn weergegeven op de analysecertificaten, die in bijlage 4 zijn opgenomen. De analyseresultaten zijn, waar van toepassing, getoetst. De toetsingstabellen zijn opgenomen in bijlage 5. Opgemerkt wordt dat de toetsing niet is gevalideerd door de Rijksoverheid (BoToVa).

Grond

Voor de interpretatie van de resultaten van de chemische analyses van de grondmonsters zijn de meetwaarden, conform bijlage G van de Regeling bodemkwaliteit 2022, gecorrigeerd voor de gemeten percentages lutum en/of organische stof.

De gecorrigeerde meetwaarden zijn vergeleken met het toetsingskader van de Omgevingswet. Dit toetsingskader bestaat uit:

de interventiewaarden, zoals opgenomen in bijlage IIA van het Besluit activiteiten leefomgeving.

Naast het wettelijk kader zijn de gecorrigeerde meetwaarden getoetst aan de index. De index is het rekenkundig gemiddelde van de Kwaliteitseis voor landbouw/natuur¹ en de interventiewaarde/waarden voor toelaatbare kwaliteit voor de betreffende stof. Indien de gecorrigeerde meetwaarde voor één of meerdere stoffen de index overschrijdt kan in potentie sprake zijn van een overschrijding van de toelaatbare kwaliteit. Het uitvoeren van nader bodemonderzoek is dan een aantal gevallen noodzakelijk.

Grondwater

De meetwaarden zijn vergeleken met het toetsingskader van de Omgevingswet. Dit toetsingskader bestaat uit:

- signaleringsparameters, zoals opgenomen in bijlage Vd van het Besluit kwaliteit leefomgeving.

Deze signaleringsparameter is gelijk aan de voormalige interventiewaarde (Wbb). Vanwege het ontbreken van de toetsing aan de signaleringsparameters in de toetsservices is gebruik gemaakt van de toetsing aan de Wbb. Hierbij is de signaleringsparameter gelijk gesteld aan de interventiewaarde en de streefwaarde aan de voorkeurswaarde².

Naast het wettelijk kader zijn de gecorrigeerde meetwaarden getoetst aan de index. De index is het rekenkundig gemiddelde van de voorkeurswaarde en de signaleringswaarde voor de betreffende stof.

Indien de meetwaarde voor één of meerdere stoffen de index overschrijdt kan in potentie sprake zijn van een overschrijding signaleringsparameter in het grondwater elders op de locatie. Het uitvoeren van nader bodemonderzoek is dan een aantal gevallen noodzakelijk.

In tabel 3.4.1 zijn de resultaten van het veld- en laboratoriumonderzoek opgenomen alsmede de resultaten van de uitgevoerde toetsingen.

<Index 0,0</p>
niet of licht verontreinigd: het gehalte/concentratie is lager dan of gelijk

aan de index:

>Index 0,5 licht, maar potentieel sterk verontreinigd: het gehalte/concentratie

overschrijdt de Index en is lager dan of gelijk aan de interventiewaarde

/signaleringsparameter;

>I/>S (index 1,0) sterk verontreinigd: het gehalte/concentratie overschrijdt de

interventiewaarde/signaleringsparameter.

Kenmerk rapportage: A5631-06/KHA/rap1

¹ Regeling bodemkwaliteit 2022, bijlage B tabel 1

² Voorkeurswaarden, zoals opgenomen in de Omgevingsverordening van de provincie (Zuid-Holland)
Milieuhygiënisch vooronderzoek, verkennend bodemonderzoek en (indicatief) funderingsonderzoek
Locatie: Euromarkt te Alphen aan den Rijn

TABEL 3.4.1: Overzicht monsters, monstersamenstelling, analyses en toetsingsresultaten

Monstercodes	Deelmonsters en bodemlagen (bodemlagen in m-mv)	Matrix en eventuele bijzonderheden	Analyse	toetsingsresultaten Toetsingsresultaten			
				> Index (niet tot licht verontreinigd)	> Index (licht verontreinigd, maar potentieel sterk verontreinigd)	> I / S (sterk verontreinigd)	
Gehele terrein							
Toplaag/boveng	rond (ophooglaag)						
MM01	08 (0,50 - 1,00) 16 (0,00 - 0,50) 17 (0,06 - 0,50) 28 (0,50 - 1,00)	Zand, sporen baksteen	#1	-	-	-	
MM02	34A (0,50 - 0,90) 42 (0,05 - 0,50) 48 (0,00 - 0,40) 49 (0,00 - 0,50)	Zand, sporen baksteen	#1	PCB (0,03) Minerale olie C10 - C40 (0,05)	-	-	
MM03	02 (0,50 - 0,80) 04 (0,06 - 0,56) 10 (0,06 - 0,50) 20 (0,05 - 0,55)	Zand, geen bijzonderheden	#1	-	-	-	
MM04	30 (0,50 - 1,00) 36 (0,06 - 0,50) 40 (0,50 - 1,00) 45 (0,50 - 1,00)	Zand, geen bijzonderheden	#1	-	-		
M05	35-A (0,30 - 0,65)	Zand, matig puingranulaat houdend, brokken puin	#1	=	-	-	
M06	48 (0,60 - 1,00)	Zand, sterk puingranulaat houdend, brokken puin, sporen baksteen	#1	Zink (0,03) Kwik (-) PAK (0,37) Minerale olie C10 - C40 (0,06)	PCB (0,91)	-	
Ondergrond (oo	rspronkelijke maaiveld)						
ММ07	18 (0.80 - 1,00) 22 (1,50 - 2,00) 23 (0,70 - 1,00)	Klei, sporen baksteen	#1	Kobalt (0,03) Nikkel (0,44) Koper (0,04) Zink (0,06) Kwik (0,01) Lood (0,23)	-	-	
MM08	38 (0,80 - 1,00) 41 (0,80 - 1,00) 46 (1,20 - 1,50) 48 (1,00 - 1,20)	Klei, sporen baksteen	#1	Nikkel (0,19) Koper (0,02) Kwik (0,01) Lood (0,09) PCB (0,07)	-	-	
MM09	04 (0,70 - 1,20) 06 (1,20 - 1,70) 11 (1,30 - 1,80) 16 (1,20 - 1,70)	Klei, geen bijzonderheden	#1	Nikkel (0,08) Kwik (-)	-	-	
MM10	20 (0,70 - 1,20) 27 (0,90 - 1,20) 29 (0,90 - 1,30) 31 (1,00 - 1,50)	Klei, geen bijzonderheden	#1	Nikkel (0,1)	-	-	
MM11	42 (1,00 - 1,50) 43 (1,20 - 1,70) 45 (1,50 - 2,00) 47 (1,00 - 1,20)	Klei, geen bijzonderheden	#1	Nikkel (0,08) Kwik (-) PCB (0,03)	-	9	
Diepere ondergi	rond						
MM14	06 (1,70 - 2,20) 11 (2,00 - 2,50) 20 (1,20 - 1,50) 22 (2,00 - 2,50) 31 (3,00 - 3,50) 45 (1,00 - 1,50) 49 (1,60 - 2,10)	Veen, sporen hout	#1	Kwik (-) PCB (-)	-	-	
MM15	04 (1,60 - 2,00) 16 (2,50 - 3,00) 20 (2,70 - 3,20) 29 (1,80 - 2,00) 33A (2,50 - 3,00) 38 (2,50 - 3,00) 41 (1,50 - 2,00) 48 (1,60 - 2,10)	Klei, resten hout	#1	Nikkel (0,07) PCB (0,02)	-	-	
Grondwater							
11-1-1	11 (1,50 - 2,50)	Grondwater	#3	Barium (0,47)	-	-	
24-1-1	24 (2,00 - 3,00)	Grondwater	#3	Nikkel (0,13) Barium (0,28)	-	-	

Monstercodes	Deelmonsters en bodemlagen (bodemlagen in m-mv)	Matrix en eventuele bijzonderheden	Analyse	Toetsingsresultaten		
				> Index (niet tot licht verontreinigd)	> Index (licht verontreinigd, maar potentieel sterk verontreinigd)	> I / S (sterk verontreinigd)
45-1-1	45 (1,50 - 2,50)	Grondwater	#3	Barium (0,28)	-	-
31A-1-1	31A (1,50 - 2,50)	Grondwater	#3 / #4	Barium (0,17)	-	-
Voormalige (ged	lempte) tankval					
Grond						
M12	34 (1,70 - 2,00)	Klei, geen bijzonderheden	#1 / #2	Nikkel (0,1)	-	-
M13	35 (1,20 - 1,50)	Klei, sporen baksteen	#1 / #2	Koper (0,14) Zink (0,22) Cadmium (0,03) Kwik (0,03) Lood (0,48) PAK (0,05)	-	-
Grondwater						
31A-1-1	31A (1,50 - 2,50)	Grondwater	#3 / #4	Barium (0,17)	-	-

Blanco : Niet geanalyseerd / onderzocht / getoetst #1 : Standaardpakket grond

#1 : Standaardpakket grond #2 : Cyanide vrij en totaal grond #3 : Standaardpakket grondwater #4 : Cyanide vrij en totaal grondwater

Asbest

Van de grond met puingranulaat en puin zijn monsters genomen en geanalyseerd op asbest.

Opgemerkt wordt dat geen asbestonderzoek conform de NEN 5707 is uitgevoerd. Op basis van de resultaten kan enkel uitspraak worden gedaan over de aan- of afwezigheid van asbest in het grondmonster.

TABEL 3.4.2: Overzicht monsters, monstersamenstelling, analyses en resultaten asbest

Monstercodes en bodemlagen (bodemlagen in cm-mv)	Analyse	Asbestgehalte (mg/kg ds.)
Grond		
ASB-GROND-M01 35-A (30-65)	#1	<0,5 mg/kg ds
ASB-GROND-M02 48 (60-100)	#1	<1,7 mg/kg ds

#1 : Asbest grond

3.5 INTERPRETATIE

Gehele terrein

Grond

De (boven)grond bestaat uit zand tot ca. 1,0 m-mv. Dit betreft vermoedelijk de opgebrachte ophooglaag. De ondergrond (vanaf 1,0 m-mv) bestaat tot de geboorde dieptes van maximaal 5,0 m-mv overwegend uit klei. Zeer plaatselijk zijn veenlagen in de klei aanwezig. In de grond is plaatselijk sprake van bijmengingen met bodemvreemde materialen. Het betreft met name sporen baksteen in de zandige ophooglaag en zeer plaatselijk in de direct onder de ophooglaag liggende kleilaag. Zeer plaatselijk is sprake van een matige bijmengingen puingranulaat en puin ter plaatse van boring 35 (en 35-A) op een diepte van 0,25 tot 0,56 m-mv en een sterke bijmenging met puingranulaat en brokken puin ter plaatse van boring 48 op een diepte van 0,6 tot 1,0 m-mv.

Ter plaatse van de gedempte sloten is geen afwijkende bodemopbouw noch aanwijzingen voor de voormalige sloten (slib- of rietresten) waargenomen. Hoogstwaarschijnlijk zijn de voormalige sloten gedempt met dezelfde grond als waarmee het terrein is opgehoogd.

Op basis van de analyse- en toetsingsresultaten blijkt dat het zand in de toplaag/bovengrond, welke vermoedelijk de ophooglaag betreft, over het algemeen niet verontreinigd is met de onderzochte prameters. Plaatselijk is het zand met sporen baksteen (MM02) licht verontreinigd met PCB en minerale olie. Het sterk puingranulaat houdende zand met brokken puin en sporen baksteen (M06) ter plaatse van boring 48 (traject 0,6 - 1,0 m-mv) is licht verontreinigd met kwik, zink, PAK en minerale olie en dat tevens de index (voormalige tussenwaarde) voor PCB wordt overschreden. Hiermee is de aanwezigheid van (een) sterke verontreiniging(en) niet uitgesloten. Op basis van locatie en soort bijmengingen die zijn aangetroffen bij boring 48 is het aannemelijk dat deze afkomstig zijn van de funderingslaag onder de klinkerverharding die bij boringen 45, 46 en 47 is aangetroffen. Mogelijk is bij het aanbrengen van deze funderingslaag wat van het materiaal in het gras ernaast terecht gekomen (bij boring 48).

De klei in de ondergrond (voormalige maaiveld) is hooguit licht verontreinigd met enkele tot diverse zware metalen en plaatselijk PCB.

Het veen en de klei in de diepere ondergrond (MM14) zijn hooguit licht verontreinigd met kwik en/of nikkel en PCB.

Grondwater

Aan het bemonsterde grondwater zijn geen afwijkingen waargenomen die kunnen duiden op een eventuele bodemverontreiniging. De gemeten waarden voor de zuurgraad en het elektrisch geleidingsvermogen duiden niet op een eventuele verontreiniging van het grondwater. Opgemerkt wordt dat de troebelheid sterk verhoogd is ten opzichte van de natuurlijke troebeling die maximaal 10 NTU bedraagt. De hoge troebeling duidt op de aanwezigheid van veel onopgeloste bestanddelen (colloïden).

Op basis van de analyse- en toetsingsresultaten blijkt het grondwater over het algemeen hooguit licht verontreinigd te zijn met barium en plaatselijk met nikkel.

Voormalige (gedempte) tankval

Grond

De (boven)grond bestaat uit zand tot ca. 1,0 m-mv. Dit betreft vermoedelijk de opgebrachte ophooglaag. De ondergrond (vanaf 1,0 m-mv) bestaat tot de geboorde dieptes van maximaal 5,0 m-mv overwegend uit klei. Zeer plaatselijk zijn veenlagen in de klei aanwezig. Ter plaatse van de voormalige (gedempte) tankval is bij het gesaneerde deel geen afwijkende bodemopbouw waargenomen. Tevens is bij het onbekende deel ook geen afwijkende bodemopbouw waargenomen. Wel is nabij de voormalige tankval ter plaatse van boring 35 in de grond puin aangetroffen. Hoogstwaarschijnlijk is het zuidelijk deel van de voormalige tankval (welke niet gesaneerd is) gedempt met dezelfde grond als waarmee het terrein is opgehoogd.

Het gesaneerde deel van de voormalige tankval is tevens vermoedelijk met vergelijkbaar materiaal als de ophooglaag aangevuld.

Op basis van de analyse- en toetsingsresultaten blijkt de zintuiglijk schone klei (M12) ter plaatse van boring 34 (traject 1,7 - 2,0 m-mv) hooguit licht verontreinigd te zijn met nikkel. De klei met sporen baksteen (M13) ter plaatse van boring 35 (traject 1,2 - 1,5 m-mv) is hooguit licht verontreinigd met diverse zware metalen en PAK. De kwaliteit hiervan verschilt niet zoveel als die van de klei (oorspronkelijke maaiveld) ter plaatse van het gehele terrein. Er zijn geen verhoogde concentraties (niet boven de detectiegrens) aan cyanide aangetoond.

Grondwater

Aan het bemonsterde grondwater zijn geen afwijkingen waargenomen die kunnen duiden op een eventuele bodemverontreiniging. De gemeten waarden voor de zuurgraad en het elektrisch geleidingsvermogen duiden niet op een eventuele verontreiniging van het grondwater. Opgemerkt wordt dat de troebelheid sterk verhoogd is ten opzichte van de natuurlijke troebeling die maximaal 10 NTU bedraagt. De hoge troebeling duidt op de aanwezigheid van veel

Milieuhygiënisch vooronderzoek, verkennend bodemonderzoek en (indicatief) funderingsonderzoek Locatie: Euromarkt te Alphen aan den Rijn

Kenmerk rapportage: A5631-06/KHA/rap1

onopgeloste bestanddelen (colloïden).

Op basis van de analyse- en toetsingsresultaten blijkt het grondwater over het algemeen hooguit licht verontreinigd te zijn met barium. Er zijn geen verhoogde concentraties (niet boven de detectiegrens) aan cyanide aangetoond. De verhoogde concentratie met barium ligt in lijn met de andere peilbuizen.

Asbest

Er is zowel zintuiglijk als analytisch (indicatief) geen asbest aangetoond.

Bespreking

Middels onderhavig onderzoek is de milieuhygiënische kwaliteit van de grond en het grondwater vastgelegd. Hieruit blijkt dat ter plaatse van het gehele terrein de grond en het grondwater over het algemeen licht verontreinigd zijn. Zeer plaatselijk (boring 48) is in de grond een overschrijding van de index aangetoond welke gerelateerd wordt aan de bodemvreemde bijmengingen, mogelijk afkomstig van de ernaast aangebrachte funderingslaag. Daar deze verhoging zeer lokaal is waargenomen en niet elders op de locatie is aangetroffen, wordt niet aannemelijk geacht dat er een bodemvolume aanwezig is van minimaal 25 m³ aaneengesloten grond waarbinnen gemiddeld de interventiewaarde voor PCB wordt overschreden. Derhalve is onzes inziens geen sprake van een overschrijding van de toelaatbare kwaliteit van de bodem. Aanvullend onderzoek wordt niet noodzakelijk geacht.

Tevens wordt opgemerkt wordt dat het aannemelijk is dat de grond onder de bebouwing dezelfde bodemopbouw (zandige ophooglaag met daaronder klei) heeft als op het uitpandige terrein Aangezien er over het algemeen hooguit lichte verontreinigingen worden aangetroffen wordt verwacht dat de bodem onder de bebouwing niet van een 'slechtere' kwaliteit is dan de bodem op het uitpandige terrein. Onderzoek ter plaatse van de bebouwde terreindelen wordt onzes inziens dan vooralsnog niet nodig geacht.

Ter plaatse van de voormalige (gedempte) tankval zijn geen aanwijzingen gevonden voor een (verdere) verontreiniging. Opgemerkt dient te worden dat bij het zuidelijke deel nabij de weg in de loop van de jaren vermoedelijk veel grondroerende werkzaamheden in de grond hebben plaatsgevonden (bebouwing, weg en kabels/leidingen). Derhalve kan niet geheel uitgesloten worden dat er bij de voorgenomen graafwerkzaamheden eventueel toch nog (verontreinigd) dempingsmateriaal van de voormalige tankval naar boven kan komen.

3.6 TOETSING HYPOTHESE

De op basis van het milieuhygiënisch vooronderzoek vastgestelde onderzoekshypothese is getoetst aan de resultaten van het verkennend bodemonderzoek. De toetsing van de hypothese is in onderstaande tabel opgenomen. Indien van toepassing is, bij een (gedeeltelijk) onjuiste hypothese de invloed op representativiteit van het onderzoek in relatie met de gevolgde onderzoeksstrategie aangegeven.

TABEL 3.6.1: Hypothese en onderzoeksstrategie

	nese en onderzoeksstrategie				
Gehele onderzoel	kslocatie				
Hypothese	Verdacht				
Toetsing	Op basis van de onderzoeksresultaten wordt de hypothese:				
	Aangenomen				
Reden: in de grond en het grondwater komen over het algemeen lichte verontrein en wordt zeer plaatselijk de index overschreden.					
Voormalige (gede	mpte) tankval				
Hypothese	Verdacht				
Toetsing	Op basis van de onderzoeksresultaten wordt de hypothese:				
Verworpen (formeel)					
	Reden: in de grond en het grondwater komen lichte verontreinigingen voor. Echter, er kan niet met zekerheid worden gezegd of deze verontreinigingen zijn gerelateerd aan de voormalige (gedempte) tankval aangezien de aangetoonde verontontreinigingen geen duidelijk ander beeld geven dan de verontreinigingen aangetoond op de gehele onderzoekslocatie. Tevens zijn in de grond geen afwijkende bodemopbouw noch aanwijzingen voor (verontreinigd) dempingsmateriaal waargenomen. Derhalve is onzes inziens de hypothese verworpen.				
Gedempte sloten					
Hypothese	Verdacht				
Toetsing	Op basis van de onderzoeksresultaten wordt de hypothese:				
Verworpen (formeel)					
	Reden: in de grond is geen afwijkende bodemopbouw noch aanwijzingen voor (verontreinigd) dempingsmateriaal waargenomen.				
Representativiteit	Naar onze mening is de toegepaste onderzoeksstrategie voldoende representatief voor het vastleggen van de milieukundige bodemkwaliteit ter plaatse van de onderzoekslocatie. Aanvullende onderzoeksinspanningen worden niet noodzakelijk geacht.				

4. (INDCATIEF) ONDERZOEK FUNDATIEMATERIAAL

4.1 ONDERZOEKSOPZET

Het onderzoek van het fundatiemateriaal is op indicatieve wijze, in combinatie met het asfaltonderzoek, uitgevoerd. Het fundatiemateriaal is onderzocht op het voorkomen van asbest, samenstelling (minerale olie, PAK en PCB) en uitloging. De onderzoeksresultaten geven een indicatie inzake het voorkomen van asbest en een indicatie van de te verwachtten toepasbaarheid op basis van de samenstelling.

Het te onderzoeken gebied is opgenomen in de navolgende tabel.

TABEL 4.1.1: Onderzoeksgebied

Te onderzoeken fundering			
Locatie	Fundering		
Fundatiemateriaal onder klinkerverharding bij boringen 45, 46, 47	Repac, puingranulaat en grind met beton laagjes		
Fundatiemateriaal onder klinkerverharding bij boring 53	Beton, puingranulaat en grind met brokken puin		

4.2 VELDONDERZOEK

De boorgaten in het asfalt zijn gebruikt voor de bemonstering van het fundatiemateriaal. Om het fundatiemateriaal te bemonsteren is ter plaatse van elk boorgat een boring uitgevoerd tot minimaal 0,5 m in de zintuiglijk schone grond onder de fundatielaag. De boorstaten zijn opgenomen in bijlage 2.

Het opgeboorde materiaal betreft een funderingslaag bestaande uit repac, puingranulaat, beton en grind en is visueel geïnspecteerd op het voorkomen van asbestverdachte materialen (grove fractie). Hierbij zijn geen asbestverdachte materialen waargenomen. Op basis van de resultaten van de visuele inspectie en de ruimtelijke verdeling van de boringen is in het veld een mengmonster samengesteld van het opgeboorde fundatiemateriaal.

4.3 LABORATORIUMONDERZOEK EN TOETSINGEN

Bij het laboratoriumonderzoek is de navolgende bepalingen en/of analyses uitgevoerd:

- Asbestonderzoek: conform NEN 5898 (indicatieve bepaling);
- Samenstelling- en uitlogingsonderzoek: minerale olie, PAK (10) en PCB (7), verkorte uitlogingsproef.

Het analyseresultaat is opgenomen in tabel 4.3.1.

Asbestonderzoek: Indien asbest is aangetoond is het type asbest, het materiaaltype en de hechtgebondenheid aangegeven. De analysecertificaten zijn opgenomen in bijlage 3.

Samenstelling- en uitlogingsonderzoek: Het fundatiemateriaal is geanalyseerd op de samenstelling (minerale olie, PAK en PCB) en emissie van zware metalen en anionen middels een schudproef.

De analyseresultaten zijn getoetst aan de maximale samenstellingswaarden en emissiewaarden zoals verwoord in het Besluit bodemkwaliteit. De analysecertificaten zijn opgenomen in bijlage 3. De toetsingsresultaten zijn opgenomen in bijlage 4.

TABEL 4.3.1: Samenvatting onderzoek fundatiemateriaal

TABEL 4.3. I. Same	envaluing onde	ZUEK TUHUALIEH	iateriaai				
Veldonderzoek							
Uitvoerings- periode	22 en 23 mei 2024 – bemonstering fundatiemateriaal						
Uitvoerende partij	Bodem Expert						
Locatie	Laboratoriumonderzoek						
	Gemiddelde dikte fundatie [cm]	Meng- monsters	Deel- monsters	Analyse	Asbest onderzoek [mg/kg.ds]	Samenstelling onderzoek	Uitloging onderzoek
Fundatiemateriaal onder klinkerverharding bij boringen 45, 46, 47	40 cm	ASB-PUIN- MM01	45 46 47	#1	<0,3	-	-
		FUND-MM01	1 47	#2	-	≤SW	≤EW
Fundatiemateriaal onder klinkerverharding bij boring 53	35 cm	ASB-PUIN- M02	53	#1	<0,9	-	-
		FUND-MM01		#2	-	≤SW	≤EW

^{- :} niet geanalyseerd / bepaald #1: Asbest in puin

Op basis van de toetsing van de resultaten van de indicatieve keuring kan worden gesteld dat het materiaal herbruikbaar is. Er is indicatief geen asbest boven de detectiegrens aangetoond.

^{#2:} Samenstelling en uitloging

 [≤] SW: kleiner of gelijk aan de samenstellingswaarde (toepasbaar)
 > SW: overschrijding samenstellingswaarde (niet toepasbaar)

[≤] EW: kleiner of gelijk aan de emissiewaarde (toepasbaar)

> EW: overschrijding emissiewaarde (niet toepasbaar)

5. CONCLUSIES EN AANBEVELINGEN

5.1 CONCLUSIES

In opdracht van Euromarkt Development BV is door IDDS een milieuhygiënisch vooronderzoek en een verkennend milieukundig bodemonderzoek uitgevoerd. De onderzoekslocatie is gelegen aan de Euromarkt te Alphen aan den Rijn.

Het onderzoek is uitgevoerd in verband met de voorgenomen herontwikkeling van de locatie, waarbij de huidige bebouwing wordt gesloopt en nieuwbouw wordt geplaatst, en het uitvoeren van de activiteit 'Graven in de bodem (Besluit activiteiten leefomgeving (Bal) §4.119/§4.120)'.

De doelstelling van het onderzoek is om te bepalen of er in de grond en/of het grondwater ter plaatse van de onderzoekslocatie sprake is van een (sterke) verontreiniging.

Gehele onderzoekslocatie / terrein

- De (boven)grond bestaat uit zand tot ca. 1,0 m-mv. Dit betreft vermoedelijk de opgebrachte ophooglaag. De ondergrond (vanaf 1,0 m-mv) bestaat tot de geboorde dieptes van maximaal 5,0 m-mv overwegend uit klei. Zeer plaatselijk zijn veenlagen in de klei aanwezig;
- In de grond is plaatselijk sprake van bijmengingen met bodemvreemde materialen. Het betreft met name sporen baksteen in de zandige ophooglaag en zeer plaatselijk in de direct onder de ophooglaag liggende kleilaag;
- Zeer plaatselijk is sprake van een matige bijmengingen puingranulaat en puin ter plaatse van boring 35 (en 35-A) op een diepte van 0,25 tot 0,56 m-mv en een sterke bijmenging met puingranulaat en brokken puin ter plaatse van boring 48 op een diepte van 0,6 tot 1,0 m-mv;
- Ter plaatse van de gedempte sloten is geen afwijkende bodemopbouw noch aanwijzingen voor de voormalige sloten (slib- of rietresten) waargenomen.
 Hoogstwaarschijnlijk zijn de voormalige sloten gedempt met dezelfde grond als waarmee het terrein is opgehoogd;
- Het zand in de toplaag/bovengrond, welke vermoedelijk de ophooglaag betreft, is over het algemeen niet verontreinigd met de onderzochte prameters. Plaatselijk is het zand met sporen baksteen licht verontreinigd met PCB en minerale olie;
- Het sterk puingranulaat houdende zand met brokken puin en sporen baksteen ter plaatse van boring 48 (traject 0,6 1,0 m-mv) is licht verontreinigd met kwik, zink, PAK en minerale olie en er wordt tevens de index (voormalige tussenwaarde) voor PCB overschreden. Hiermee is de aanwezigheid van (een) sterke verontreiniging(en) niet uitgesloten;
- De klei in de ondergrond (voormalige maaiveld) is hooguit licht verontreinigd met enkele tot diverse zware metalen en plaatselijk PCB;
- Het veen en de klei in de diepere ondergrond (MM14) zijn hooguit licht verontreinigd met kwik en/of nikkel en PCB;
- Het grondwater is over het algemeen hooguit licht verontreinigd met barium en plaatselijk met nikkel;
- Zowel zintuiglijk als analytisch (indicatief) is er in de grond geen asbest aangetoond;
- Op basis van de toetsing van de resultaten van de indicatieve keuring kan worden gesteld dat het materiaal (repac, beton en puingranulaat) herbruikbaar is. Er is indicatief geen asbest boven de detectiegrens aangetoond.

Voormalige (gedempte) tankval

- Ter plaatse van de voormalige (gedempte) tankval is bij het gesaneerde deel geen afwijkende bodemopbouw waargenomen. Tevens is bij het onbekende deel ook geen afwijkende bodemopbouw waargenomen. Wel is nabij de voormalige tankval ter plaatse van boring 35 in de grond puin aangetroffen;
- Hoogstwaarschijnlijk is het zuidelijk deel van de voormalige tankval (welke niet gesaneerd is) gedempt met dezelfde grond als waarmee het terrein is opgehoogd. Het

Kenmerk rapportage: A5631-06/KHA/rap1 Pagina 29 van 32

- gesaneerde deel van de voormalige tankval is tevens vermoedelijk met vergelijkbaar materiaal als de ophooglaag aangevuld;
- De zintuiglijk schone klei ter plaatse van boring 34 (traject 1,7 2,0 m-mv) is hooguit licht verontreinigd met nikkel;
- De klei met sporen baksteen ter plaatse van boring 35 (traject 1,2 1,5 m-mv) is hooguit licht verontreinigd met diverse zware metalen en PAK. De kwaliteit hiervan verschilt niet zoveel als die van de klei (oorspronkelijke maaiveld) ter plaatse van het gehele terrein;
- Er zijn geen verhoogde concentraties (niet boven de detectiegrens) aan cyanide aangetoond;
- Het grondwater is over het algemeen hooguit licht verontreinigd met barium;
- Er zijn geen verhoogde concentraties (niet boven de detectiegrens) aan cyanide aangetoond in het grondwater.

Middels onderhavig onderzoek is de milieuhygiënische kwaliteit van de grond en het grondwater vastgelegd. De zeer plaatselijk aanwezige overschrijding van de index voor PCB in de grond is vermoedelijk gerelateerd aan de bodemvreemde bijmengingen welke mogelijk afkomstig zijn van de ernaast aangebrachte funderingslaag, Daar deze verhoging zeer lokaal is waargenomen en niet elders op de locatie is aangetroffen, wordt niet aannemelijk geacht dat er een bodemvolume aanwezig is van minimaal 25 m³ aaneengesloten grond waarbinnen gemiddeld de interventiewaarde voor PCB wordt overschreden. Derhalve is onzes inziens geen sprake van een overschrijding van de toelaatbare kwaliteit van de bodem. Aanvullend onderzoek wordt niet noodzakelijk geacht.

Opgemerkt wordt dat het aannemelijk is dat de grond onder de bebouwing dezelfde bodemopbouw (zandige ophooglaag met daaronder klei) heeft als op het uitpandige terrein Aangezien er tevens over het algemeen hooguit lichte verontreinigingen worden aangetroffen wordt verwacht dat de bodem onder de bebouwing niet van een 'slechtere' kwaliteit is dan de bodem op het uitpandige terrein.

Ter plaatse van de voormalige (gedempte) tankval zijn geen aanwijzingen gevonden voor een (verdere) verontreiniging. Opgemerkt dient te worden dat bij het zuidelijke deel nabij de weg in de loop van de jaren vermoedelijk veel grondroerende werkzaamheden in de grond hebben plaatsgevonden (bebouwing, weg en kabels/leidingen).

Onzes inziens is hiermee in afdoende mate een beeld verkregen van de chemische bodemkwaliteit. Er worden geen belemmeringen voorzien ten aanzien van de voorgenomen werkzaamheden.

5.2 AANBEVELINGEN

Wij adviseren om de onderzoeksresultaten voor te leggen aan het bevoegd gezag om na te gaan of zij kunnen instemmen met de onderzoeksresultaten en bovengenoemde conclusies.

Indien bij de voorgenomen (bouw)werkzaamheden grond wordt ontgraven én afvoer van grond plaatsvindt moet tenminste een week voor de start een melding ingevolge §4.119 van het Besluit activiteiten leefomgeving worden verricht. Als de ontgraven grond op locatie volledig wordt teruggebracht in de bodem is een melding niet nodig. Opgemerkt wordt dat de ontgraven grond niet langer dan 8 weken na beëindiging van het graven tijdelijk mag worden opgeslagen op locatie.

Bij afvoeren en hergebruik van grond is de regelgeving onder de Omgevingswet van toepassing.

Indien op de onderzoekslocatie ten gevolge van graafwerkzaamheden grond vrijkomt en buiten de locatie wordt hergebruikt, vindt hergebruik veelal plaats binnen het kader van het Besluit bodemkwaliteit. In dat geval dient de chemische kwaliteit van de grond te worden getoetst aan

de kwaliteitsnormen die door het Besluit bodemkwaliteit aan de betreffende toepassing worden verbonden.

Het bodemonderzoek is steekproefsgewijs uitgevoerd. Hierdoor is het niet uit te sluiten dat plaatselijk sprake kan zijn van een afwijkende bodemopbouw. Indien op de locatie graafwerkzaamheden worden uitgevoerd wordt derhalve aanbevolen om alert te blijven op plaatselijke afwijkingen in de bodem die kunnen wijzen op een eventuele bodemverontreiniging.

6. BETROUWBAARHEID

Het onderhavige onderzoek is op zorgvuldige wijze verricht volgens de algemeen geaccepteerde inzichten en methoden. Echter, een verkennend bodemonderzoek is gebaseerd op het nemen van een beperkt aantal monsters en chemische analyses.

IDDS streeft naar een zo groot mogelijke representativiteit van het onderzoek. Toch blijft het mogelijk dat lokaal afwijkingen in de milieuhygiënische kwaliteit of opbouw van het bodemmateriaal voorkomen, ten opzichte van de in onderhavig rapport beschreven situatie. IDDS acht zich niet aansprakelijk voor eventuele schade die als gevolg van deze afwijkingen zou kunnen ontstaan.

Hierbij dient tevens te worden gewezen op het feit dat het uitgevoerde verkennend onderzoek een momentopname is. Beïnvloeding van de milieuhygiënische kwaliteit van de bodem (grond en grondwater) zou plaats kunnen vinden na uitvoering van dit onderzoek door, bijvoorbeeld het bouwrijp maken van de locatie, het aanvoeren van grond van elders, toevoeging van bodemvreemde materialen of het naar de onderzoekslocatie verspreiden van verontreinigingen van verder gelegen terreinen via het grondwater.

Naarmate de periode tussen de uitvoering van het onderzoek en het gebruik van de resultaten langer wordt, zal meer voorzichtigheid betracht moeten worden. In veel gevallen hanteren de beoordelende instanties termijnen (doorgaans maximaal 3 jaar voor een bedrijfslocatie en maximaal 5 jaar voor een woonlocatie) waarbinnen de onderzoeksresultaten representatief worden geacht te zijn.

Bij het gebruik van de resultaten van dit onderzoek dient het doel van het onderzoek goed in ogenschouw te worden genomen. Zo zullen de resultaten van een onderzoek naar het voorkomen en/of verspreiding van één specifieke verontreinigende stof geen uitsluitsel bieden omtrent de aanwezigheid aan verhoogde concentraties van overige, niet onderzochte verontreinigende stoffen.

BIJLAGE 1.1

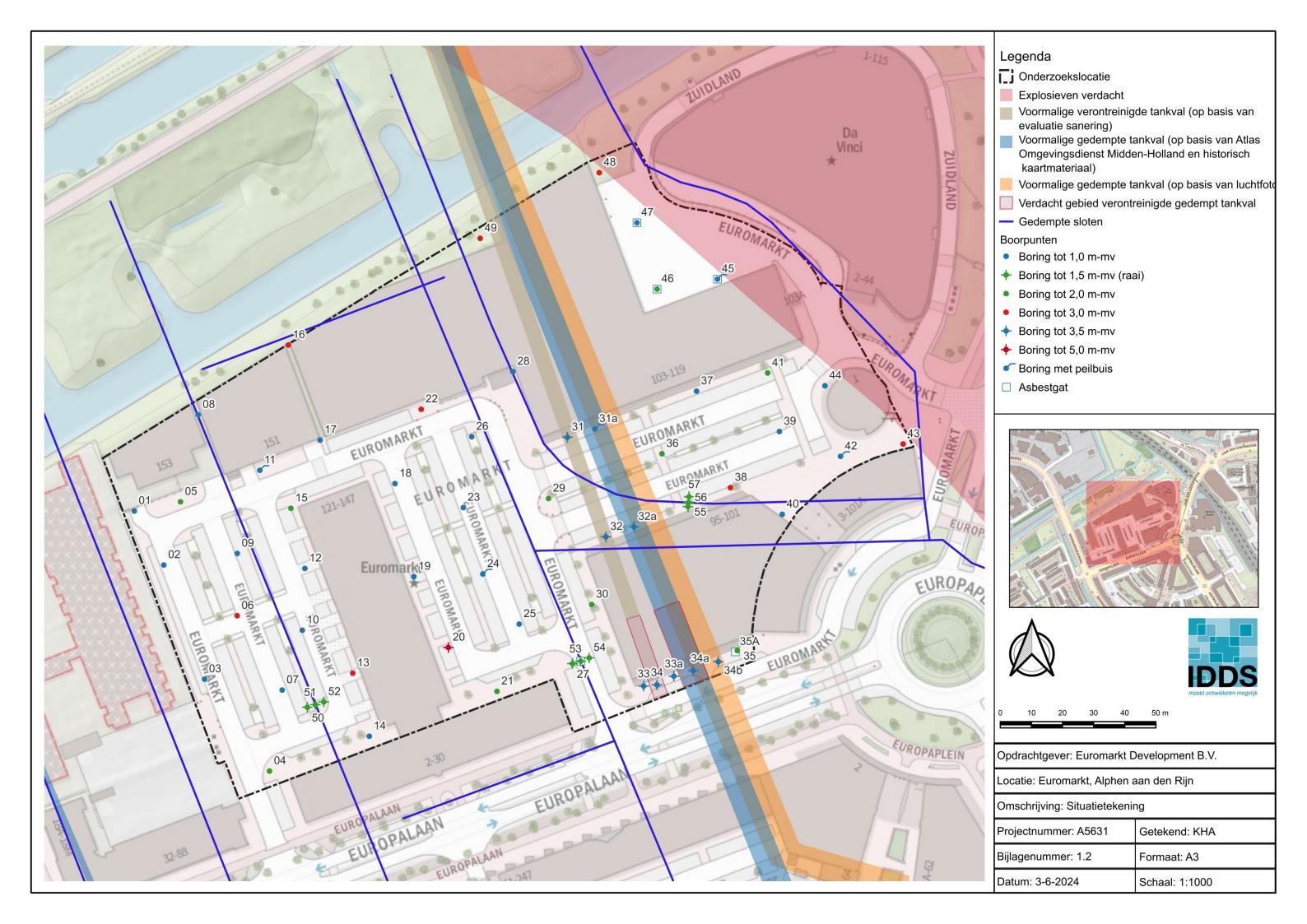
Topografische kaart

Legenda

Locatie-aanduiding

1.000 m 200

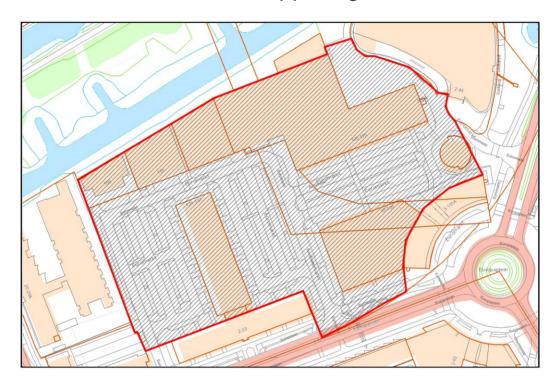
Opdrachtgever: Euromarkt Development B.V.


Locatie: Euromarkt, Alphen aan den Rijn

Omschrijving: Topografische kaart

Projectnummer: A5631	Getekend: KHA		
Bijlagenummer: 1.1	Formaat: A4		
Datum: 30-5-2024	Schaal: 1:20000		

BIJLAGE 1.2 Situatietekening



BIJLAGE 2.1
Rapportage omgevingsdienst

Atlas Rapportage

Selectie met getekend gebied

<u>Kaartlagen</u>

- 1. Bodemlocatie
- 2. Bodemonderzoeksrapport
- 3. Verontreinigingscontour
- 4. Saneringscontour
- 5. Zorgmaatregel
- 6. Ondergrondse brandstoftanks
- 7. Meldingen Besluit bodemkwaliteit
- 8. Bedrijfsactiviteiten
- 9. Slootdempingen TBK

Afdrukdatum: 26-4-2024

Bodemlocatie

Locatienummer

Omschriivina

ZH048412494

Euromarkt 151

Status locatie

Vervolgactie Wbb: voldoende onderzocht

Status beschikking:

Status onderzoeken: Pot. verontreinigd

Besluiten

(Geen)

Onderzoeken

 Plaatsing peilbuis en grondwatermonitoring OBAS, rapportnummer 18049801, P&J Milieuservices B.V., 12-07-2018

https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2018220740

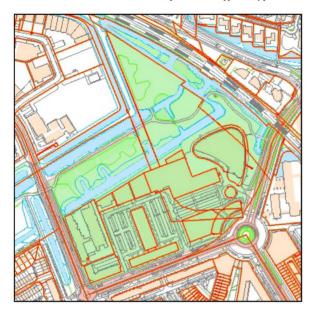
Historisch bodembestand

(Geen)

Activiteiten

(Geen)

Aanvullende informatie slootdemping


(Geen)

Locatienummer

Omschriivina

ZH048400029

Europalaan (plangebied Kerk en Zanen)

Status locatie

Vervolgactie Wbb: voldoende gesaneerd

Status beschikking:

Status onderzoeken: niet ernstig, licht tot matig verontreinigd

Besluiten

Type: Instemmen uitgevoerde sanering

Datum: 14-06-2017 Status: Definitief

Type: Instemmen met SP

Datum: 21-10-1991 Status: Definitief

Onderzoeken

 Verkennend bodemonderzoek Noorderkeerkring 20 te Alphen aan den Rijn, rapportnummer 2004N618/PMU/rap1, IDDS BV, 20-07-2020 https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2021050718

- Verkennend bodem- en asbest in grondonderzoek , rapportnummer 25.19.00079.1, SGS, 21-03-2019

https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2021051237

- Laan der Continenten (NS-emplacement), rapportnummer MBC04.0733, BKH, 21-02-2006

https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2015185410

Kaartlaag: Bodemlocatie

Laan der Continenten (nabij Da Vinci), rapportnummer RPS / AAB 05.0155, BKH, 24
 -10-2005

https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2015185411

 Laan der Continenten (groenzone), rapportnummer 20051871/DVIS, Geofox-Lexmond B.V., 01-08-2005

https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2015185405

 Laan der Continenten (Da Vinci), rapportnummer B05A0039, Syncera De Straat B.V., 17-03-2005

https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2015185406

 Europalaan ongenummerd (gronddepots), rapportnummer zie tevens bodemdossier 107, 30-01-1996

Geen download

 Laan der Continenten (AWZI), rapportnummer 95.190 en ALP.B20.10, CSO Adviesbureau, 19-06-1995

https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2015185401

 Evaluatie demping - tankval Europalaan / Noorderkeerkring (deelgebied A1), rapportnummer 2332, Tukkers, 14-01-1993

https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2015184796

- Laan der Continenten (deelgebied A1), rapportnummer 1447-1, Tukkers, 01-01-1993

 Geen download
- saneringsplan deelgebied A1, rapportnummer 1964-1, Tukkers, 21-08-1991 https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2016263222
- Interimnotitie 1964, rapportnummer GB/ML 1964-9107190, Tukkers, 30-07-1991 https://atlas.odmh.nl/html5viewer/index.html?viewer=Atlas.Atlas&layerTheme=Bodem&document=2016263222

Historisch bodembestand

Bedrijfsnaam: GEMEENTE ALPHEN AAN DEN RYN

Adres: Laan der Continenten, 2408AA ALPHEN AAN DEN RIJN

Omschrijving: brandstoftank (ondergronds)

UBI code/NSX score: 631240 / 99.9

Dossier: GRIFFIE/V2000/2999 (PZH: 1945-1996/KONINGSK.)

Bedrijfsnaam: Schilderwerken

Adres: Euromarkt 153, 2408BE ALPHEN AAN DEN RIJN

Omschrijving: onverdachte activiteit

UBI code/NSX score: 000000 / -

Dossier: - (-)

Bedrijfsnaam: GEMEENTE ALPHEN AAN DEN RYN

Adres: Laan der Continenten, 2408AA ALPHEN AAN DEN RIJN

Omschrijving: rioolwaterzuiveringsinrichting (rwzi)

LIRI codo/NSV ccoro: 000011 / 362 0

Kaartlaag: Bodemlocatie 3 van 4

UBI code/NSX score: 900011 / 362.9

Dossier: GRIFFIE/V2000/2207 (PZH: 1945-1996/KONINGSK.)

Bedrijfsnaam: GEMEENTE ALPHEN AAN DEN RYN

Adres: Laan der Continenten, 2408AA ALPHEN AAN DEN RIJN

Omschrijving: rioolwaterzuiveringsinrichting (rwzi)

UBI code/NSX score: 900011 / 362.9

Dossier: GRIFFIE/V2000/2999 (PZH: 1945-1996/KONINGSK.)

Bedrijfsnaam: GEMEENTE ALPHEN AAN DEN RYN

Adres: Laan der Continenten 0, 2408AA Alphen aan den Rijn

Omschrijving: rioolwaterzuiveringsinrichting (rwzi)

UBI code/NSX score: 900011 / 362.9

Dossier: ALPHEN AD RIJN 750 (SA RIJNLANDS MIDDEN)

Bedrijfsnaam: Schilderwerken

Adres: Euromarkt 153, 2408BE ALPHEN AAN DEN RIJN

Omschrijving: schildersbedrijf UBI code/NSX score: 454401 / 14.0

Dossier: - (-)

Activiteiten

Omschrijving: brandstoftank (ondergronds)

UBI code: 631240 NSX score: 99,9

Omschrijving: demping (niet gespecificeerd)

UBI code: 900060 NSX score: 1,9

Omschrijving: onverdachte activiteit

UBI code: 000000 NSX score: 0,0

Omschrijving: rioolwaterzuiveringsinrichting (rwzi)

UBI code: 900011 NSX score: 362,9

Omschrijving: schildersbedrijf

UBI code: 454401 NSX score: 14,0

Aanvullende informatie slootdemping

(Geen)

Omschrijving

saneringsplan deelgebied A1

Locatiecode: ZH048400029

Rapportnummer: 1964-1

Rapportdatum: 33471

Rapportauteur: Tukkers

Download Rapport

Omschrijving

Laan der Continenten (deelgebied A1)

Locatiecode: ZH048400029

Rapportnummer: 1447-1

Rapportdatum: 33970

Rapportauteur: Tukkers

Download Rapport

Omschrijving

Laan der Continenten (groenzone)

Locatiecode: ZH048400029

Rapportnummer: 20051871/DVIS

Rapportdatum: 38565

Rapportauteur: Geofox-Lexmond B.V.

Download Rapport

Omschrijving

Europalaan ongenummerd (gronddepots)

Locatiecode: ZH048400029

Rapportnummer: zie tevens

bodemdossier 107 Rapportdatum: 35094

Rapportauteur:

Download Rapport

Omschrijving

Evaluatie demping - tankval Europalaan / Noorderkeerkring (deelgebied A1)

Locatiecode: ZH048400029

Rapportnummer: 2332

Rapportdatum: 33983

Rapportauteur: Tukkers

Download Rapport

Omschrijving

Interimnotitie 1964

Locatiecode: ZH048400029

Rapportnummer: GB/ML 1964-9107190

Rapportdatum: 33449

Rapportauteur: Tukkers

Download Rapport

Kaartlaag: Bodemonderzoeksrapport

Omschrijving

Laan der Continenten (Da Vinci)

Locatiecode: ZH048400029

Rapportnummer: B05A0039

Rapportdatum: 38428

Rapportauteur: Syncera De Straat B.V.

Download Rapport

Omschrijving

Plaatsing peilbuis en grondwatermonitoring OBAS

Locatiecode: ZH048412494

Rapportnummer: 18049801

Rapportdatum: 43293

Rapportauteur: P&J Milieuservices B.V.

Download Rapport

Verontreinigingscontour

Omschrijving

Grond

Locatiecode: ZH048400029

Contour type: Grond

Grenswaarde: I
Oppervlakte (m2): 800
Volume (m3): 1600

Componenten: Metalen, Overige stoffe

Bovenkant (m-mv): 0,00 Onderkant (m-mv): 2,00

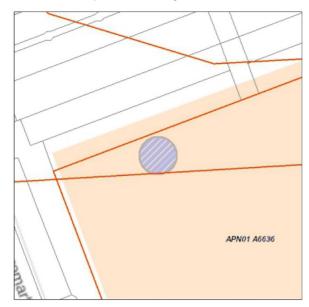
Saneringscontour

Omschrijving

Grond

Locatiecode: ZH048400029

Type contour: Grond



Bedrijfsactiviteiten

Omschrijving

Aldi Markt Alphen a/d Rijn

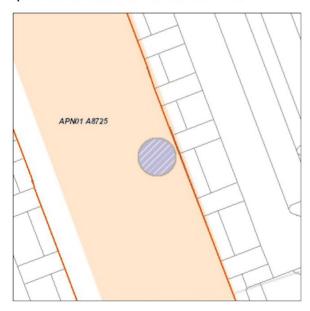
Locatie: Euromarkt 95 Alphen aan den

Rijn

Opmerking branche: Groot- en

detailhandel

Dossiernummer: L-018276


Milieu-categorie: 3

Milieu Wettelijk Kader: Type B

Status: Actief

Omschrijving

Alphense sleutel- en slotenservice

Locatie: Euromarkt 129 + 139 Alphen aan

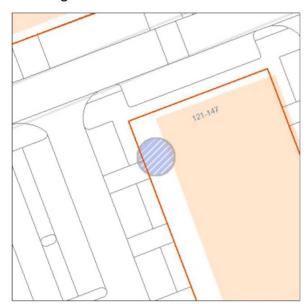
den Rijn

Opmerking branche: Groot- en

detailhandel

Dossiernummer: L-018327

Milieu-categorie: 1


Milieu Wettelijk Kader: Type B

Status: Actief

Kaartlaag: Bedrijfsactiviteiten 1 van 16

Omschrijving

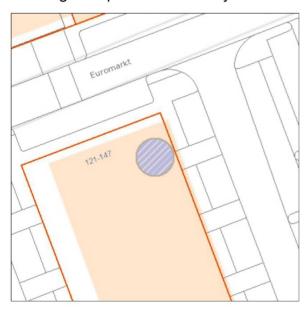
Autotaalglas

Locatie: Euromarkt 147 Alphen aan den

Rijn

Opmerking branche:

Dossiernummer: L-018335


Milieu-categorie: 2

Milieu Wettelijk Kader: Type B

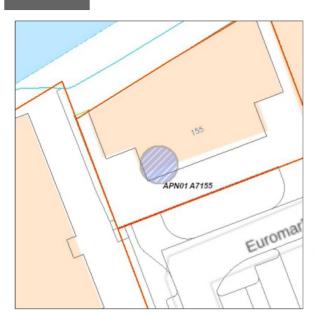
Status: Gesloten

Omschrijving

Autotaalglas Alphen aan den Rijn C

Locatie: Euromarkt 121 + 147 Alphen aan

den Rijn


Opmerking branche: Motorvoertuigenhandel en besstelintichtiegen 018285

Milieu-categorie: 2

Milieu Wettelijk Kader: Type B

Status: Actief

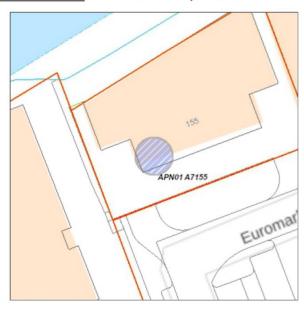
Omschrijving

Locatie: Euromarkt 153 Alphen aan den

Rijn

Opmerking branche: Bouwnijverheid

Dossiernummer: L-018339


Milieu-categorie: 1

Milieu Wettelijk Kader: Type B

Status: Gesloten

Omschrijving

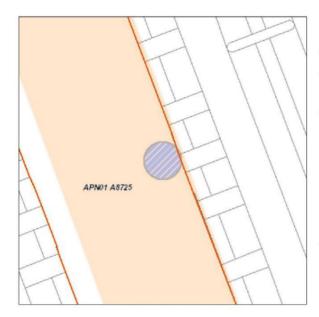
Revalidatiehulpmiddelen

Locatie: Euromarkt 153 Alphen aan den

Rijn

Opmerking branche:

Dossiernummer: L-018338


Milieu-categorie: 2

Milieu Wettelijk Kader: Type B

Status: Gesloten

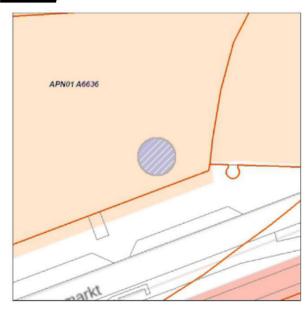
Omschrijving

Brezan automaterialen

Locatie: Euromarkt 127 + 141 Alphen aan

den Rijn

Opmerking branche: Motorvoertuigenhandel en besstelingichtiggen 018289


Milieu-categorie: 2

Milieu Wettelijk Kader: Type B

Status: Actief

Omschrijving

Automaterialen

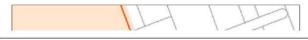
Locatie: Euromarkt 87 Alphen aan den

Rijn

Opmerking branche: Groot- en

detailhandel

Dossiernummer: L-018275


Milieu-categorie: 1

Milieu Wettelijk Kader: Type B

Status: Gesloten

Omschrijving

C3 Car Comfort Centre

Locatie: Euromarkt 127 Alphen aan den

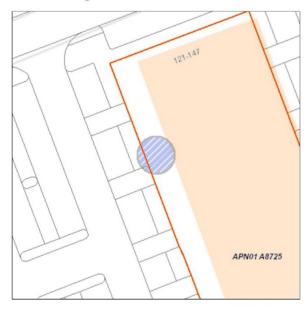
Kaartlaag: Bedrijfsactiviteiten 4 van 16

Rijn

Opmerking branche: Groot- en

detailhandel

Dossiernummer: L-018288


Milieu-categorie: 1

Milieu Wettelijk Kader: Type A

Status: Gesloten

Omschrijving

Contra designmeubelen

Locatie: Euromarkt 145 Alphen aan den

Rijn

Opmerking branche: Groot- en

detailhandel

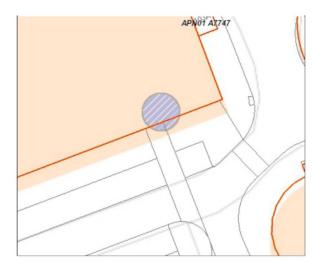
Dossiernummer: L-018334

Milieu-categorie: 0

Milieu Wettelijk Kader: niet Wm

Status: Actief

Omschrijving


de Slaapkamergroep B.V.

Locatie: Euromarkt 103- 111 Alphen aan

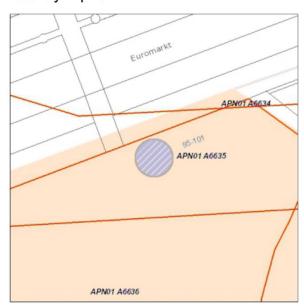
den Rijn

Kaartlaag: Bedrijfsactiviteiten

Opmerking branche: Groot- en

detailhandel

Dossiernummer: L-018281


Milieu-categorie: 1

Milieu Wettelijk Kader: Type A

Status: Actief

Omschrijving

Decokay Alphen

Locatie: Euromarkt 99 + 87 Alphen aan

den Rijn

Opmerking branche: Groot- en

detailhandel

Dossiernummer: L-018279

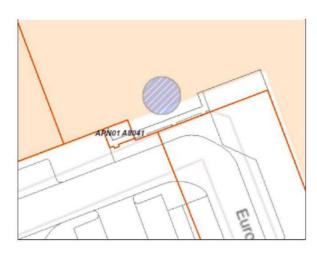
Milieu-categorie: 2

Milieu Wettelijk Kader: Type A

Status: Actief

Omschrijving

Goedhart Bouwmarkt B.V. (gamma)



Locatie: Euromarkt 119, 2408BD Alphen

aan den Rijn

Opmerking branche: Groot- en

Kaartlaag: Bedrijfsactiviteiten

detailhandel

Dossiernummer: L-018284

Milieu-categorie: 2

Milieu Wettelijk Kader: Type B

Status: Actief

Omschrijving

witgoed

Locatie: Euromarkt 133 Alphen aan den

Rijn

Opmerking branche: Groot- en

detailhandel

Dossiernummer: L-018331

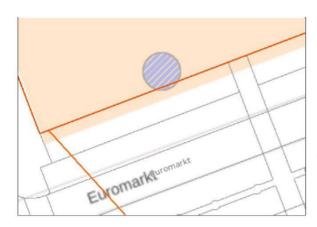
Milieu-categorie: 1

Milieu Wettelijk Kader: Type A

Status: Actief

Omschrijving

Wonen


Locatie: Euromarkt 115 in Alphen aan den

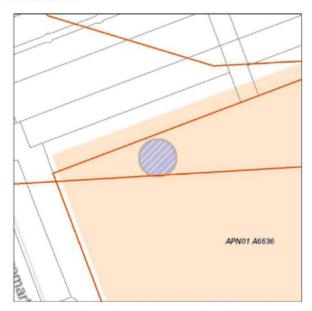
Rijn

Opmerking branche: Groot- en

detailhandel

Kaartlaag: Bedrijfsactiviteiten

Dossiernummer: L-018283


Milieu-categorie: 1

Milieu Wettelijk Kader: niet Wm

Status: Actief

Omschrijving

It's Electric

Locatie: Euromarkt 95 Alphen aan den

Rijn

Opmerking branche: Groot- en

detailhandel

Dossiernummer: L-018278

Milieu-categorie: 2

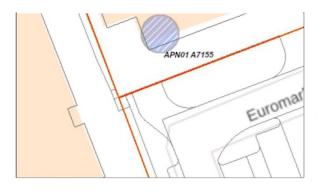
Milieu Wettelijk Kader: Type B

Status: Gesloten

Omschrijving

Fysiotherapie & Fysiofit

Locatie: Euromarkt 153 Alphen aan den

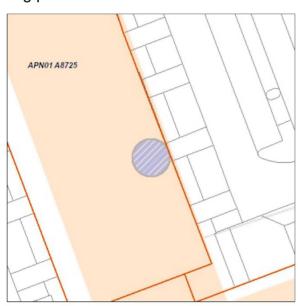

Rijn

Opmerking branche: Overige

dienstverlening

Dossiernummer: L-018337

Kaartlaag: Bedrijfsactiviteiten


Milieu-categorie: 1

Milieu Wettelijk Kader: Type A

Status: Actief

Omschrijving

Leeg pand

Locatie: Euromarkt 131 Alphen aan den

Rijn

Opmerking branche:

Dossiernummer: L-018328

Milieu-categorie: 0

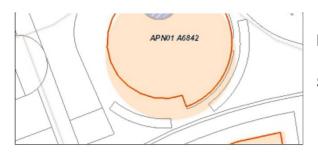
Milieu Wettelijk Kader: -

Status: Gesloten

Omschrijving

Merucci

Locatie: Euromarkt 1 Alphen aan den Rijn

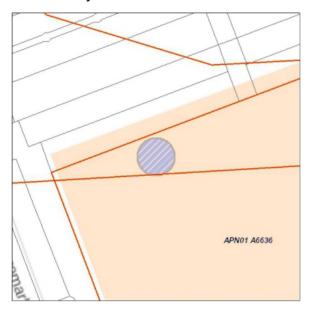

Opmerking branche: Groot- en

detailhandel

Dossiernummer: L-018201

Milieu-categorie: 2

Kaartlaag: Bedrijfsactiviteiten



Milieu Wettelijk Kader: Type A

Status: Gesloten

Omschrijving

Restaria Royaal

Locatie: Euromarkt 95 TO Alphen aan

den Rijn

Opmerking branche: Sport en recreatie

Dossiernummer: L-018277

Milieu-categorie: 2

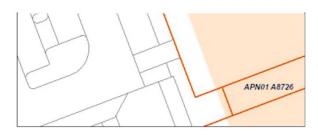
Milieu Wettelijk Kader: Type B

Status: Gesloten

Omschrijving

The Feel Good Company

Locatie: Euromarkt 137 Alphen aan den

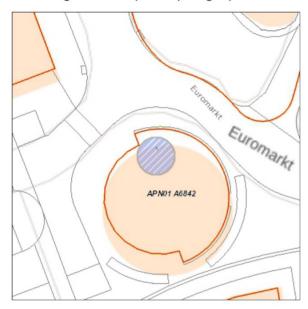

Rijn

Opmerking branche: Transportbedrijven

Dossiernummer: L-018333

Milieu-categorie: 1

Kaartlaag: Bedrijfsactiviteiten



Milieu Wettelijk Kader: Type B

Status: Actief

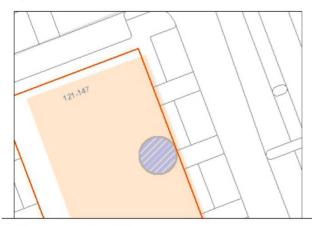
Omschrijving

Thuiszorgwinkel Alphen (Vergro)

Locatie: Euromarkt 1 Alphen aan den Rijn

Opmerking branche: Sport en recreatie

Dossiernummer: L-018202


Milieu-categorie: 1

Milieu Wettelijk Kader: Type A

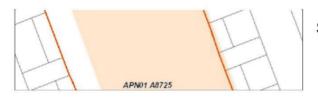
Status: Actief

Omschrijving

Triple AAA

Locatie: Euromarkt 123 + 145 Alphen

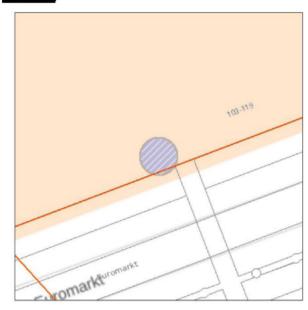
aan den Rijn


Opmerking branche:

Dossiernummer: L-018286

Milieu-categorie: 0

Milieu Wettelijk Kader: -


Kaartlaag: Bedrijfsactiviteiten

Status: Gesloten

Omschrijving

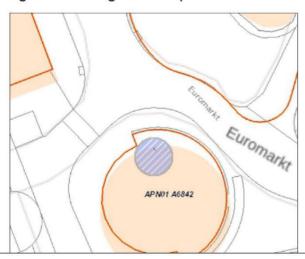
Houten Vloeren

Locatie: Euromarkt 113, 2408BD Alphen

aan den Rijn

Opmerking branche: Transportbedrijven

Dossiernummer: L-018282


Milieu-categorie: 2

Milieu Wettelijk Kader: Type B

Status: Actief

Omschrijving

Vegro Thuiszorgwinkel Alphen

Locatie: Euromarkt 1 Alphen aan den Rijn

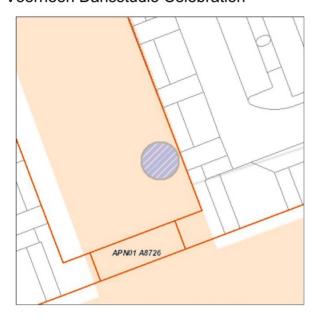
Opmerking branche: Groot- en

detailhandel

Dossiernummer: L-018200

Milieu-categorie: 1

Milieu Wettelijk Kader: niet Wm


Status: Actief

Kaartlaag: Bedrijfsactiviteiten 12 van 16

Omschrijving

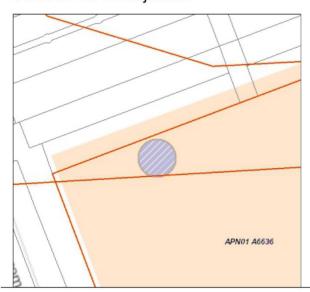
Voorheen Dansstudio Celebration

Locatie: Euromarkt 133 Alphen aan den

Rijn

Opmerking branche: Sport en recreatie

Dossiernummer: L-018330


Milieu-categorie: 1

Milieu Wettelijk Kader: Type B

Status: Gesloten

Omschrijving

Voorheen De Broodjesbus

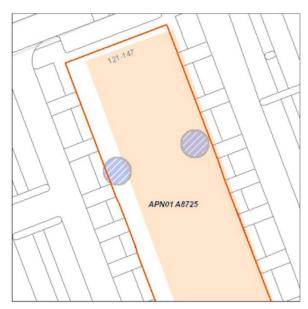
Locatie: Euromarkt 95 toT Alphen aan

den Rijn

Opmerking branche: Sport en recreatie

Dossiernummer: L-019120

Milieu-categorie: 2


Milieu Wettelijk Kader: Type B

Status: Gesloten

Kaartlaag: Bedrijfsactiviteiten

Omschrijving

Warmteservice

Locatie: Euromarkt 125 + 143 Alphen aan

den Rijn

Opmerking branche: Bouwnijverheid

Dossiernummer: L-018287

Milieu-categorie: 2

Milieu Wettelijk Kader: Type B

Status: Actief

Omschrijving

Wereldtuin

Locatie: Euromarkt 133 Alphen aan den

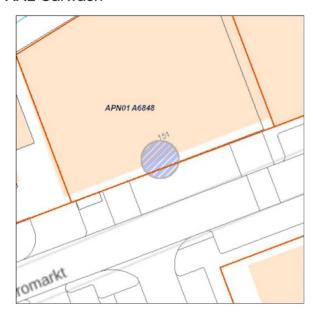
Rijn

Opmerking branche: Groot- en

detailhandel

Dossiernummer: L-018329

Milieu-categorie: 2


Milieu Wettelijk Kader: Type B

Status: Gesloten

Kaartlaag: Bedrijfsactiviteiten

Omschrijving

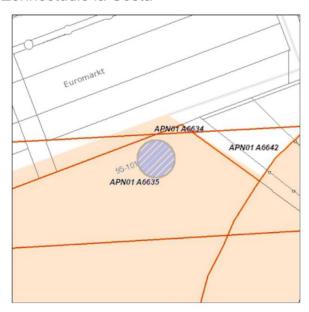
XXL Carwash

Locatie: Euromarkt 151 Alphen aan den

Rijn

Opmerking branche: Transportbedrijven

Dossiernummer: L-018336


Milieu-categorie: 2

Milieu Wettelijk Kader: Type B

Status: Actief

Omschrijving

Zonnestudio la Costa

Locatie: Euromarkt 101 Alphen aan den

Rijn

Opmerking branche: Groot- en

detailhandel

Dossiernummer: L-018280

Milieu-categorie: 1

Milieu Wettelijk Kader: Type A

Status: Actief

Kaartlaag: Bedrijfsactiviteiten 15 van 16

Toelichting op verstrekte informatie

Bodemlocatie

In het Bodem Informatie Systeem (BIS) zijn bodemlocaties ingetekend. Een bodemlocatie is een locatie waar iets bekend is over de bodemkwaliteit of een mogelijke bodemverontreiniging. Vaak zijn op een bodemlocatie één of meerdere onderzoeken uitgevoerd, maar dat hoeft niet. De bodemlocatie kan ook een verdenking van een bodemverontreiniging betreffen, op basis van historische informatie.

Hieronder volgt een toelichting per item:

Locatienummer	Uniek nummer van de locatie in het BIS
Omschrijving	Naam van de locatie zoals bekend in het BIS
	De verplichting die in het kader van de Wet bodembescherming op de locatie rust. Let op: Indien er in het kader van de Wbb geen vervolgactie noodzakelijk is ("geen vervolg") wil dit niet zeggen dat er in een ander kader geen verplichting bestaat om de bodem te onderzoeken. Bij een bouwvergunning of grondverzet kan bijvoorbeeld alsnog een bodemonderzoek noodzakelijk zijn. Zie hiervoor de betreffende nota's op de website van de Omgevingsdienst (nota Bodemkwaliteit bij Bouwen en Nota Bodembeheer). "Geen vervolg" wil zeggen dat er bij ongewijzigd gebruik geen onderzoeks- of saneringsnoodzaak bestaat.
Status beschikking	De beschikkingstatus van de locatie op basis van het meest recente besluit.
Status onderzoeken	De verontreinigingstatus van de gehele locatie op basis van alle uitgevoerde bodemonderzoeken. Als alleen een historisch (voor-) onderzoek is uitgevoerd kan alleen een verwachting worden uitgesproken (potentieel verontreinigd of potentieel ernstig). Als een bodemonderzoek is uitgevoerd is de locatie wel of niet ernstig verontreinigd.
Besluiten	De besluiten die op basis van de Wet bodembescherming zijn genomen op de locatie worden hier weergegeven. Eventuele belemmeringen als gevolg van deze besluiten zijn ingeschreven bij het Kadaster.

Het Historisch bodembestand (HBB) is integraal opgenomen in de kaart met Bodemlocaties en bevat verschillende soorten historische informatie, namelijk over voormalige bedrijfsactiviteiten en over dempingen. Beide worden hieronder toegelicht.

Voormalige bedrijfsactiviteiten

Tussen 1995 en 1997 heeft de provincie Zuid-Holland een inventarisatie laten uitvoeren van potentieel verontreinigde voormalige bedrijfsterreinen. Voor de inventarisatie is gebruik gemaakt van twee archiefbronnen, te weten:

- Het archief van de Kamers van Koophandel in de provincie.
- De op grond van de Hinderwet aan bedrijven verleende vergunningen.

Met beide bronnen wordt ruwweg de tijdsperiode 1824 tot 1997 gedekt. Uit de enorme hoeveelheid informatie die in de genoemde bronnen ligt opgeslagen, is een selectie gemaakt. Met deze inventarisatie kan worden bekeken of er in het verleden bodembedreigende bedrijfsactiviteiten op een perceel hebben plaatsgevonden. Met de NSX-score kan een inschatting worden opgemaakt hoe bodembedreigend de genoemde vergunde activiteit is. Deze score loopt van 0 tot 1000. Een score van 0 betekent dat de activiteit niet bodembedreigend is. Een score van 1000 betekent dat de activiteit (in grote mate) bodembedreigend is. Een vermelding met een hoge score hoeft niet te betekenen dat er ook daadwerkelijk bodemverontreiniging op het perceel aanwezig is. Bodemonderzoek zal dit moeten uitwijzen. Onder "Vindplaats dossier" wordt vermeld in welk archief het Hinderwetdossier van de voormalige bedrijfsactiviteiten kunnen worden gevonden. (Zie de introductiepagina van de Atlas Midden-Holland voor een toelichting op de archieven en dossiernummers).

Slootdempingen

In 1995 is voor het gehele landelijke gebied in Zuid-Holland een onderzoek naar stortplaatsen en slootdempingen uitgevoerd. Het betrof een luchtfoto-interpretatie, waarbij luchtfoto's uit 1955 zijn vergeleken met luchtfoto's uit 1992. Daarbij is vastgesteld welke waterlopen en waterplassen die in 1955 nog zichtbaar waren, in 1992 waren 'verdwenen' en waar dus sprake moest zijn van een demping. Op deze wijze werden circa 40.000 gedempte sloten opgespoord. Als er sprake is van een slootdemping wil nog niet zeggen dat er ook sprake is van een bodemverontreiniging.

Sloten die zijn gedempt bij het bouwrijp maken van woonwijken of bedrijfsterreinen zijn in een deel van de Krimpenerwaard vastgelegd in een aparte kaart door het Technisch Bureau in de Krimpenerwaard (TBK), tegenwoordig Ingenieursbureau Krimpenerwaard. Het betreft gebieden die in de periode 1945-2000 zijn ontwikkeld in opdracht van de toenmalige gemeenten Ouderkerk, Nederlek en Bergambacht. Voor het grootste deel van Midden-Holland is deze informatie niet beschikbaar.

Bodemonderzoeksrapporten

Alle bij de Omgevingsdienst bekende bodemonderzoeksrapporten zijn ingevoerd in het Bodem Informatie Systeem. Niet alle uitgevoerde bodemonderzoeken zijn bekend bij de Omgevingsdienst. Bijvoorbeeld onderzoeken die zijn uitgevoerd in het kader van een particuliere grondtransactie zijn vaak niet bekend bij de overheid en derhalve ook niet aanwezig in het Bodem Informatie Systeem (BIS). Indien u in het bezit bent van een dergelijk onderzoeksrapport verzoeken wij u deze op te sturen naar de Omgevingsdienst, zodat wij dit kunnen invoeren in het systeem.

Verontreinigingscontour

Op locaties waar sprake is van een geval van ernstige bodemverontreiniging is op recent onderzochte locaties een contour van de interventiewaarde-overschrijding ingetekend.

Saneringscontour

Als er recent een sanering heeft plaatsgevonden, wordt de contour van het gesaneerde gebied getoond.

Zorgmaatregel

Als er op een gesaneerde locatie een restverontreiniging is achtergebleven kan er een zorgmaatregel van toepassing zijn.

Ondergrondse tanks

Een tank is volgens wettelijke richtlijnen gesaneerd als er een kenmerk van een tanksaneringscertificaat is ingevuld achter het kopje "Kiwa-code". Het kan voorkomen dat onder het kopje <u>Ondergrondse tanks</u> geen tank is weergeven, maar bij het item "Activiteiten" bij de Bodemlocatie wel een tank is aangegeven (en andersom). Indien onduidelijkheid bestaat over de aanwezigheid en/of status van een tank zal nader archief en/of bodemonderzoek nodig zijn om na te gaan of een tank aanwezig is.

Meldingen Besluit bodemkwaliteit

Vanaf 1 juli 2008 moet nagenoeg elke toepassing van grond en baggerspecie worden gemeld bij het Meldpunt Bodemkwaliteit. De meldingen kunnen worden geraadpleegd. De ligging is vaak indicatief, omdat het Meldpunt alleen een punt kan worden ingegeven.

Bedrijfsactiviteiten

De kaart bevat locaties waar nu een bedrijfsmatige activiteit plaatsvindt of in het (recente) verleden plaats heeft gevonden. Iedere bedrijfsmatige activiteit waarvoor een melding (Activiteitenbesluit) of vergunning in het kader van de Wet milieubeheer is vereist is opgenomen in de kaart. De Omgevingsdienst beheert het inrichtingenbestand sinds 2000. Alle inrichtingen (bedrijven) die vanaf die datum aanwezig waren, zijn terug te vinden in deze kaart als locatiedossier.

Als op een locatie geen inrichting meer aanwezig is, wordt deze aangeduid als "Gesloten". Alle locaties waar nu nog een bedrijfsmatige activiteit kan worden uitgevoerd worden aangeduid als "Actief".

De milieucategorie loopt van 1 (laag milieubelastend) tot 5 (hoog milieubelastend).

Inrichtingen die voor 1997 zijn opgeheven en als potentieel bodembedreigend zijn aangemerkt zijn opgenomen in het HBB-bestand en later als Bodemlocatie (zie bij Bodemlocatie).

Disclaimer

In de Atlas Midden-Holland wordt de bij de Omgevingsdienst Midden-Holland bekende informatie over de bodemkwaliteit getoond. De informatie is afkomstig uit het Bodem Informatie Systeem en wordt automatisch gegenereerd op basis van geografische ligging van het opgegeven perceel. Het betreft informatie over:

- bodemlocaties
- bodemonderzoeksrapporten
- verontreinigingscontouren
- saneringscontouren
- zorgmaatregelen
- ondergrondse brandstoftanks
- meldingen Besluit bodemkwaliteit
- slootdempingen
- huidige bedrijfsactiviteiten

Nadrukkelijk wordt erop gewezen dat alleen een recent bodemonderzoek betrouwbare informatie geeft over de kwaliteit van het betreffende perceel. Overige informatie moet worden beschouwd als indicatie voor de te verwachten bodemkwaliteit. Tevens wijzen wij u erop dat indien geen informatie voorhanden is dit niet automatisch betekent dat de bodem schoon is. De Omgevingsdienst heeft in dat geval geen informatie van dit perceel beschikbaar in het Bodem Informatie Systeem. Voor de bodeminformatie is alle zorg in acht genomen die redelijkerwijs gevergd kan worden. Fouten zijn echter niet uit te sluiten en de lezer dient niet zondermeer uit te gaan van de juistheid van de informatie. De Omgevingsdienst is dan ook nimmer aansprakelijk voor de gevolgen van activiteiten die worden ondernomen op basis van de informatie en voor alle directe en indirecte schade, van welke aard dan ook, voortvloeiend uit of in verband staand met het gebruik van de informatie. Evenmin is de Omgevingsdienst aansprakelijk voor de eventuele gevolgen van het (al dan niet tijdelijk)

onbeschikbaar zijn van deze website of enige informatie op de website.

Topografische en kadastrale kaart

De Atlas Midden-Holland maakt voor de oriëntatie gebruik van twee achtergrondkaarten:

- de BRT Achtergrondkaart van PDOK (<u>P</u>ublieke <u>D</u>ienstverlening <u>O</u>p de <u>K</u>aart). Deze is afgeleid uit TOP10NL uit de Basisregistratie Topografie (BRT) met de straatnamen uit de Basisregistraties Adressen en Gebouwen (BAG).
- de Kadastrale kaart.

Beide kaarten zijn vrij toegankelijk en zonder restricties te gebruiken. Wel is bij (her-)gebruik de naamsvermelding van de bron (Kadaster, Basisregistratie Topografie) verplicht. De kaarten zijn afkomstig van PDOK. Zie ook www.nationaalgeoregister.nl

De Omgevingsdienst Midden-Holland is niet verantwoordelijk voor schade voortvloeiende uit of verband houdende met de inhoud of het gebruik van de kaarten.

Overige bepalingen

De Omgevingsdienst streeft ernaar de gepresenteerde informatie op deze site zo actueel mogelijk te houden. De Omgevingsdienst behoudt zich het recht voor om te allen tijde de informatie op deze site (inclusief de disclaimer) zonder voorafgaande mededeling te wijzigen. De Omgevingsdienst kan geen waarborg geven dat deze site te allen tijde zonder fouten is, noch kan zij de juistheid en actualiteit garanderen van informatie gevonden op sites die aan deze site gekoppeld zijn. Noch deze site noch enige informatie op deze site heeft een officiële status. De Omgevingsdienst accepteert geen enkele aansprakelijkheid voor de inhoud van deze website of de getoonde informatie. Deze getoonde informatie kan daarom niet gebruikt worden als basis voor enige claim.

BIJLAGE 2.2 Fotoreportage

Fotoreportage

Foto 1 nabij boorpunt 01

Foto 2 nabij boorpunt 08

Foto 3 nabij boorpunt 11

Foto 4 nabij boorpunt 11

Foto 5 nabij boorpunt 17

Foto 6 nabij boorpunt 23

Foto 7 nabij boorpunt 27

Foto 8 nabij boorpunt 31

Foto 9 nabij boorpunt 31

Foto 10 nabij boorpunt 31

Foto 11 nabij boorpunt 33

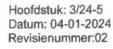
Foto 12 nabij boorpunt 35

Foto 13 nabij boorpunt 42

Foto 14 nabij boorpunt 45

Foto 15 nabij boorpunt 50

Foto 16 boorpunt 54


BIJLAGE 3.1

Formulieren veldonderzoek

Projectcode: A5631 RE. Locatienaam: EURO Markt BODEM EXPERT®

	>>> PROTO	COL 2018-FOR	RMULIER 'Monste	rnemingsforr	nulier asbest	in bodem'
OMSTANDIGHEDEN VI	SUELE INSPE	CTIE MAAIVE	LD EN BODEM:		□RE	(max. 1.000 m²)
Tijdstip aanvang werk Zon op / zon onder (KNMI):	7.45 uur 6.02 uur	21.63 uur	Bedekking maai bestaande uit:	veld:	□<25% □ vegetatie	□ >25%, □ Waterplas
Zicht:	■ >50 m	□ <50 m			anders:	Bestraat-
Neerslag: per dag	⊿ .geen □ <10mm	□ regen □ hagel	Vegetatie verwije bedekking na ve		nee nee	□ ja
	□ >10mm	□ nager	kritische afwijking ind		□<25%	□ >25%,
Verharding aanwezig ☐		Indien "ja", best	taande uit:	/		
Klinkers: Beton	1:	Asfalt:	Tegels:	Puin:	A	nders nl:
Verdachte punten aanw	ezig □ ja □	nee Indien "ja	a", bestaande uit:			
Terreinophoging:	Demping:		Asb(verdacht)	dak:	Asb/AVM o	o Maaiveld:
Afval:	Brandplek	ken:	Asb(verdacht)	beschoeling:		
ij "ja", tevens aangeven o	p tekening.					
RESULTATEN VISUELE	INSPECTIE N	MAAIVELD				
Maaiveld				- 1000		
Oppervlakte RE (m²)			Type asbest:			
nspectie-efficiëntie (%):	100		Vermoedelijke he			
Asbestverdacht materiaal 20 mm aangetroffen:	□ ја		Barcode(s) zakje monster:	es verzamel-		
indplaats(en) op tekening oteren	nee		Aan lab overged	ragen op		
RESULTATEN VISUELE	INSDECTIE D	ODEM A M	Mol	MM	02	Мм
oor elke sleuf /gat per l		ODENITI	.,,	1 (1)	02	1 1/11
Codering sleuf of gat:	15	166	47	1	35-A	53
Bodemvocht (%):	124	12.9	13.1		14,3	12.6
nspectie efficiëntie (%):	go	00	00		90%	00
Sleufbreedte (cm)	30	30	30		30	950
leuflengte (cm)	30	30	30		30	30
odemlaag (cm-mv):	10-50	19-50	15-55		30-65	15-50
lassa gezeefd (kg):	63,0	63,0	63,0		45.9	5.51
lassa fractie >20 mm	18.6	23.5	25.0		3,7	17 -
lassa fractie <20 mm	TENTER CONTRACTOR	1				1.5.2
(g):	44.4	40,5	38,0		41,2	37.6
isueel asbest >20 mm /n):	$ \mathcal{M} $				10	10
ja, aantal stukjes			V)		V	
Gewicht totaal (gram):					/	
Gewicht bemonsterd gram):		//			1	//
Barcode(s)		/				1
onsterzakje(s):	X+XXX+					
ewicht grondmonster	-7	28,2	4		13.0	12.6
g):	->	5897			5707	indicatio
	Incompanies and a second	100			TO	Ti
g):	->	11				
g): NEN 5707 of NEN 5897: Barcode(s) emmer(s): i boring in ondergrond		12 d			126	126
g): NEN 5707 of NEN 5897: Barcode(s) emmer(s):	> >	120			126	1 120
g): NEN 5707 of NEN 5897: Barcode(s) emmer(s): i boring in ondergrond) 00 d	11 12 ¢	Takita	3×3	7 1	12¢ X3X3,5

				R	esultaten	veldwer	k BRL	SIKE	20	00		0		
Project Bodem			320	296	1/./.		Tijdsti	p aanw	ezig			8	,00	uu
	htgever		161	227	144	-	Tijdsti	p vertro	kker	1		14	,30	uu
	nr. Opdr.		AF	621	1		Aantal	wachtı	uren			/		uu
Locatie			110	Aire	n Ald	Zan	Gered	en aant	al km	1		1/2	3	km
Datum	uitvoering		21-5	-29	./ - /		Aantal	overna	chtir	igen		/		stul
	kennend or ler onderzo		ek	1			Asbest	t 			<u></u>			000000
1. Pro	jectbespre	king			nee	🗷 ja 🔘	luur		n	net dhr./r	nw.			
	kening mak				🔀 nee	□ ja				uur				
	ntrole EC/p	H mete	er		n.v.t.	□ ja			**	num	mer mete	er		
4. Da	gtarief				n.v.t.					uren				-
Aantal	Diepte boring	Aanta		iepte buizen	Ramgutsen (m)	Puintoes (m)		sboren (m)	1	combi met est gat	Borin combi r asbest	net	Asbest	gaten
	0,5			2,0						2,0		0.5	Ge	en puin
	1,0	1		2,5						2,5		1.0	Lic	cht Puin
	1,5	1		3,0						3,0		1.5	Zwa	ar Puin st
	2,0	1		3,5						3,5		2.0	S	leuven
16	3,0			4,0						4,0			1 m	st
7	410		1										2 m	st
1	5.0													10 cm
	.5,0		-				_					-	0723	st
										1				
Bilzonde	rheden / ov	veria												
-	falt boring		□ja	ne ne	e Aantal	st.	☐ 120 r	nm	П	m	ım	Dikte	В	cm
	n bestratin		□ ja	∠ ne			Asfalt b			-	nee	Aant	tal	st.
	& Afwerki			aatpot	Aantal	-	Niet				ınaise	Aant	tal	st
Peilbuize				nkerpot		st.					mkoker			st
			-	ilen kap		st.				PVC		Пн	IDPE	
Steekbus	sen		□ja	✓ ne		st.				Emmers	;	Aant	al	st
Meetwiel	GPS(TI)		🗾 ja	☐ ne		st				Foto's		Aant	al	st
Waterpas	sen/GPS F	RTK	☐ ja	✓ ne	e Aantal	st		T.O.\	/ 🗆 '	Vast pur	nt	□ N	I.A.P	
Extra PBI	М	1	☐ Ga	smaske	r Filterbus	:	ABE	CP3		anders		ПТ	yvek suit	t
		X	☐ Dec	co unit	minig	raver	overd	Iruk						
Laborato	rium		□sG	S	☐ Analy	tico	☐ Al we	st		Omegan	1		CMAA	
☐ NIET verklaar itgevoerd	de werkzaa	/ SIKB amhede	BRL 2 en uitge	000 (all evoerd o	leen invullen i op deze locatie	ndien is afg als veldwe	eweken rker ona	van de i afhankel	norm ijk va) n de opd	Irachtgev	erte	hebben	
Naam ge veldwerke	certificeerd er:					Datum: 2	1-5	5-24	Ha	ndtekeni	ng	(-	
Naam as	sistent veld	werker				Datum:	21-5	-24	Ha	ndtekeni	ng			
Bijzon	iderheden a	part bi	jvoegu	i, veiiii	na wor not pro	jectnumme			45		st.			
	_				ŕ	. 2	21-5	21	9.					1/1

-7 ARgeologie

1/1

Hoofdstuk: 3/24-5 Datum: 04-01-2024 Revisienummer:02

				Re	esultaten	veldwe	rk E	BRL SIKE	200	0				
Project			0	202	a Meli		Т	ijdstip aanw	ezig			18	00	uur
Bodem	htgever		DI) 5	9 199	\dashv	T	ijdstip vertro	kken				15	uur
	nr. Opdr.		A5	6.31		j	Α	antal wachtı	ıren			/		uur
Locatie			Alre	4	dRún		G	ereden aant	al km			11	3	km
	uitvoering	9	2'-	5-24	9	_ ا		antal overna	chting	gen		/		stuk
	kennend or der onderzo		ek				A	sbest					******	
1. Pro	ojectbespre	king			nee	🗷 ja 🧷	10	uur	me	et dhr./	mw			
2. Tel	kening mak	en			nee	□ ja				uur				7.5
	ntrole EC/p	H mete	er		☐ n.v.t.	🔀 ja			2	num	mer m	eter		
4. Da	gtarief				n.v.t.					urer	1			
Aantal	Diepte boring	Aanta		iepte Ibuizen	Ramgutsen (m)	Puintoe (m)		Pulsboren (m)	m	ombi et st gat	comb	ring oi met st gat	Asbest g	gaten
	0,5		1	2,0						2,0		0.5	Gee	n puin
20	1,0		+	2,5	1				1	2,5		1.0	Lich	st nt Puin st
6	1,5			3,0						3,0		1.5	Zwaar	r Puin
	2,0		1	3,5						3,5	1	2.0	Sle	euven
3	30			4,0						4,0			1 m	st
2	3,5												2 m	st
														10 cm st
Riizonde	rheden / o	voria					-			7,80		1-875		
	falt boring		□ja	🙇 ne	e Aantal	st.	П	120 mm		n	nm	Dikt	te ci	m
	n bestratin		□ ja	◆ ne		st.		falt beton:	□ ja		nee	Aar		st.
	I & Afwerki			raatpot	Aantal	1 st.		Viet	□в	etonp	unaise	Aan	ital	st
Peilbuize	en			nkerpot	Aantal	7 st.			□в	esche	rmkok	er Aan	ital :	st
			☐ Sta	alen kap	Aantal	st.		400	□Р	VC			HDPE	
Steekbus	ssen		☐ ja	🔀 ne	e Aantal	st.			□ E	mmer	5	Aan	ital :	st
Meetwiel	/GPS TI		🔀 ja	ne	e Aantal	st			⊠ F	oto's		Aan	tal 5	st
Waterpas	ssen/GPS F	RTK	☐ ja	N ne	e Aantal	st		T.O.\	/ 🗌 V	ast pu	nt		N.A.P	
Extra PB	М	X	☐ Ga	smaskei				ABEKP3	☐ aı	nders			Tyvek suit	
		/ /	5 - 5	co unit	T	raver		overdruk						
Laborato	rium		□ SG	S	Analy	rtico		Al west	× O	megar	n		ACMAA	
	de werkzaa				een invullen i p deze locatie					de op	drachtg	jever te	hebben	
	certificeerd				FI	Datum:	22	1-5-20	Han	dtek				
veldwerk	er: sistent veld	worker				Datum:	22	-1-21	Han					
				n, verme	eia wer net pro	jectnumm				JIEK	-011			
						2	2.	5-24						1/1

Hoofdstuk: 3/24-5 Datum: 04-01-2024 Revisienummer:02

			R	esultaten	veldwerk l	BRL SIKE	2000		
Project Bodem		1	3202411	lılı	Т	ijdstip aanw	ezig	7.	45 uur
Opdrac		- 3	DDS	17	T	ijdstip vertro	kken	13	3.15 uur
	nr. Opdr.		A5631		A	antal wachti	ıren	/	uur
Locatie		A	10Hen A	d Run	G	ereden aant	al km	11	3 km
Datum ı	itvoering		23-5%	-24	A	antal overna	chtingen		stuk
	ennend or er onderzo		ek	•	★ A	sbest			
	jectbespre			🗷 nee	□ ja	.uur	met dhr./	mw	
2. Tek	ening mak	en		🔀 nee	☐ ja		uur		
	ntrole EC/p	H mete	er	🗷 n.v.t.	□ ja		num	mer meter	
4. Dag	tarief			n.v.t.			urer)	
Aantal	Diepte	Aanta	Diepte peilbuizen	Ramgutsen (m)	Puintoeslag (m)	Pulsboren (m)	Pb combi met asbest gat	Boring combi met asbest gat	
	0,5		2,0	<u> </u>			2,0	0.5	-
	1,0		2,5				2,5	2 1.0	≤ St Licht Puin
2	1,5		3,0				3,0	1 1.5	Zwaar Puin
	2,0		3,5				3,5	2.0	Sleuven
U	3.5		4,0				4,0	100 000	1 m st
7									2 m st
									10 cm st
	ľ								
Bijzonder	heden / ov	erig_		200					
Beton/asf			□ja □ ne	e Aantal	st.	120 mm	m	nm Dik	te cm
Hersteller		*	🔀 ja 🗌 ne	e Aantal	2 st. Ast	alt beton:	□ ja □	nee Aar	ntal st.
Materiaal		ng	☐ Straatpot	Aantal	st. 🗌 🏲	liet	Betonpu	unaise Aar	ntal st
Peilbuizer	1	35	☐ Klinkerpo	t Aantal	st.		Besche	r mkoker Aar	ntal st
			Stalen kap		st.		☐ PVC		HDPE
Steekbuss	sen		🗌 ja 🔣 ne	e Aantal	st.		Emmers	. Aar	ntal 5 st
Meetwiel/	GPS TI		🔼 ja 🗌 ne	e Aantal	st		K Foto's	Aar	ıtal 👌 st
Waterpass	sen/GPS R	TK	🗌 ja 🔣 ne	e Aantal	st	T.O.V	Vast pu	nt 🔲 I	N.A.P
Extra PBN	1	X	☐ Gasmaske	r Filterbus	: 🗆	ABEKP3	anders		Tyvek suit
			☐ Deco unit	minig		overdruk			
Laborator	ium		SGS	☐ Analy	tico 🔲 /	Al west	Omegan		ACMAA
☐ NIET of NIE	CONFORN de werkzaa	SIKB mhede	BRL 2000 (al	leen invullen ir op deze locatie	ndien is afgewe als veldwerke	eken van de r r onafhankeli	norm) jk van de opd	rachtgever te	hebben
Naam gec					Datum: 7 2	-5-94	Handtekeni	ng	
Veldwerke		verker			Datum:	0 21	Handtekeni		
			ivoegen verme	eld wel het pro	jectnummer. B	LII AGE AAN	E 100-04-0	st.	
_ Dijeone		/	. Jogon, voille	wor not pro	joothummer. D	INCHOL MAIN	1731	-St.	

* = indicatief.

FV11 Bodem veldwerkformulier uitvoer

Projectnummer	A5631
Projectlocatie	Euromarkt, Alphen aan den Rijn
Uitvoerend instantie	IDDS Milieu

Gecertificeerde veldmedewerker:

Datum	Veldmedewerker(s)	Protocol van toepassing
29-5-2024		2001

Overige medewerkers:

Assistenten	

Contact/voorinformatie/problemen:

Vraag	Ja / Nee	Toelichting
Contact gehad met adviseur of projectleider?	Ja	
Voorinformatie correct en volledig?	Ja	
Problemen opgetreden?	Nee	

Boorplan:

Vraag	Ja / Nee
Is afgeweken van het boorplan	Nee

Nummer pH/EC-lijst:

Is er een peilbuis geplaatst?	Nummer pH/EC-lijst:
Nee	

Asbest:

Vraag	Ja / Nee
Is asbest aangetroffen	Nee
Zo, aantal stukjes	
Bij welk boorpunt	
Getroffen maatregelen	

Protocol:

Vraag	Ja / Nee
Is het onderzoek volgens de aangegeven	Ja
protocollen uitgevoerd?	
Indien afwijking geef toelichting.	

_							
Oi	nm	10	rk	in	σ	PI	n

Geen.	
decil.	

Hierbij verklaren de erkend veldwerker en de projectleider:

- dat het onderzoek is uitgevoerd binnen de reikwijdte en conform de eisen van de BRL-SIKB 2000 en het daarbij behorende protocol 2001
- het veldwerk onafhankelijk van de opdrachtgever is uitgevoerd. IDDS Milieu heeft geen belangen bij de resultaten van het uitgevoerde onderzoek. IDDS Milieu en haar medewerkers zijn geen eigenaar van de locatie of in de nabije toekomst te worden waar de veldwerkzaamheden worden uitgevoerd.
- Het procescertificaat van IDDS Milieu en het hierbij behorende keurmerk zijn uitsluitend van toepassing op de activiteiten inzake monsterneming en de overdracht van de monsters, inclusief de daarbij behorende veldwerkregistratie, aan een erkend laboratorium of de opdrachtgever.

Ondertekening

veldmedewerker	Erkend	29-5-2024	Geregistreerde	4-6-2024
Velumedewerker	veldmedewerker		projectleider	

De formulieren zijn digitaal ondertekend. Het moment van tekenen, de data weergegeven in het formulier en de verificatie van de personen die hebben getekend zijn vastgelegd in het kwaliteitssysteem van IDDS.

FV21 Grondwatermonstername veldwerkformulier uitvoer

Projectnummer	A5631
Projectlocatie	Euromarkt, Alphen aan den Rijn
Uitvoerend instantie	IDDS Milieu

Gecertificeerde veldmedewerker:

Datum	Veldmedewerker(s)	Protocol van toepassing
29-5-2024		2002

Overige medewerkers:

Datum	Assistenten
29-5-2024	

Nummer pH/EC-lijst:

Nummer
VZ-116

Contact/voorinformatie/problemen:

Vraag	Ja / Nee	Toelichting
Staat de peilbuis op de aangegeven plaats?	Ja	
Contact gehad met adviseur of projectleider?	Ja	
Voorinformatie correct en volledig?	Ja	
Problemen opgetreden?	Nee	

Protocol:

Vraag	Ja / Nee
Is het onderzoek volgens de aangegeven protocollen uitgevoerd?	Nee (toelichten)
Indien afwijking geef toelichting.	Peilbuis 42 niet volledig af kunnen pompen en belucht door zeer slechte toestroom grondwater. Overige peilbuizen wel conform protocol.

Opmerkingen:

Geen		
Geen.		

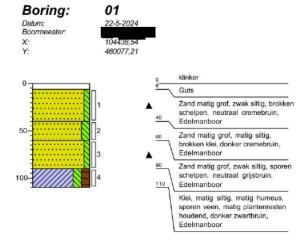
Hierbij verklaren de erkend veldwerker en de projectleider:

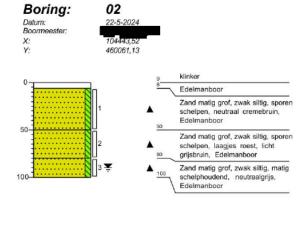
- dat het veldwerk onafhankelijk van de opdrachtgever is uitgevoerd.
 Het onderzoek is uitgevoerd conform de eisen van de BRL-SIKB2000 en het daarbij behorende protocol 2002
- het veldwerk onafhankelijk van de opdrachtgever is uitgevoerd. IDDS Milieu heeft geen belangen bij de resultaten van het uitgevoerde onderzoek. IDDS Milieu en haar medewerkers zijn geen eigenaar van de locatie of in de nabije toekomst te worden waar de veldwerkzaamheden worden uitgevoerd.
- Het procescertificaat van IDDS Milieu en het hierbij behorende keurmerk zijn uitsluitend van toepassing op de activiteiten inzake monsterneming en de overdracht van de monsters, inclusief de daarbij behorende veldwerkregistratie, aan een erkend laboratorium of de opdrachtgever.

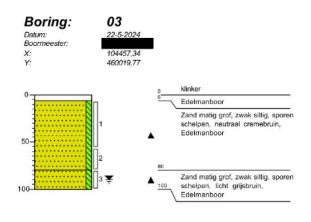
Akkoord

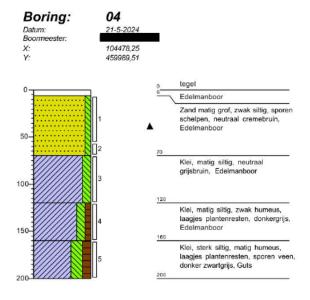
Ondertekening

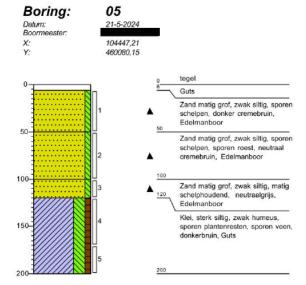
voldmodowarker	
veldmedewerker projectleider projectleider	

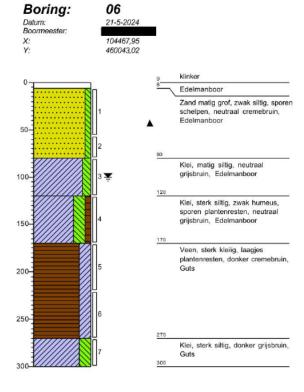

De formulieren zijn digitaal ondertekend. Het moment van tekenen, de data weergegeven in het formulier en de verificatie van de personen die hebben getekend zijn vastgelegd in het kwaliteitssysteem van IDDS.

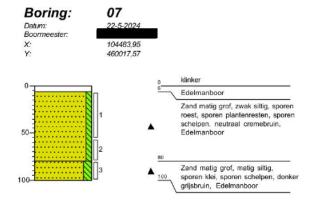


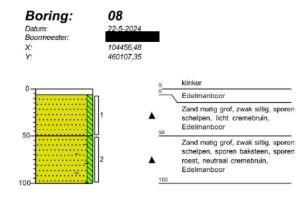


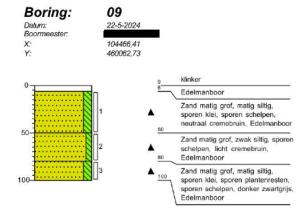

BIJLAGE 3.2

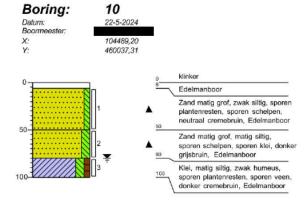

Boorstaten en legenda

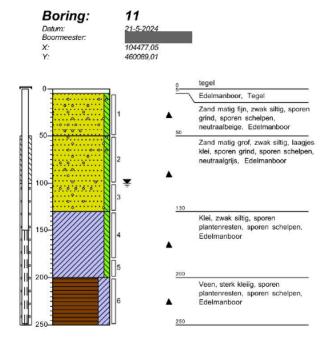


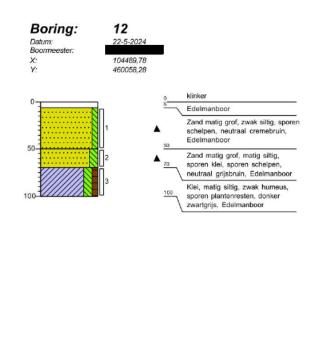


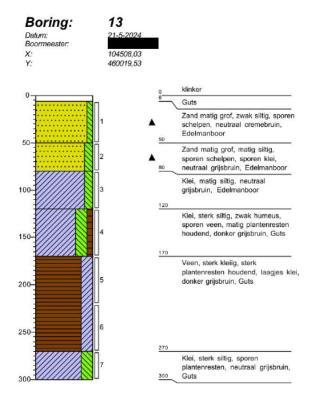


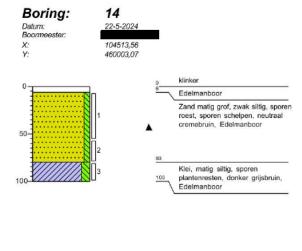


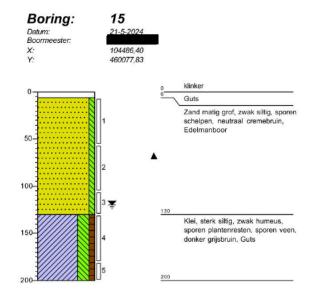


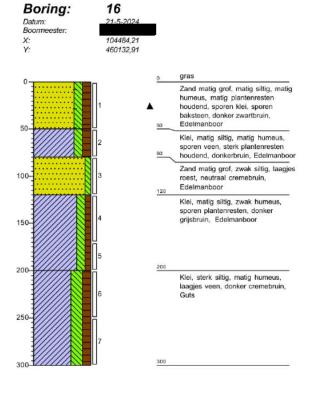


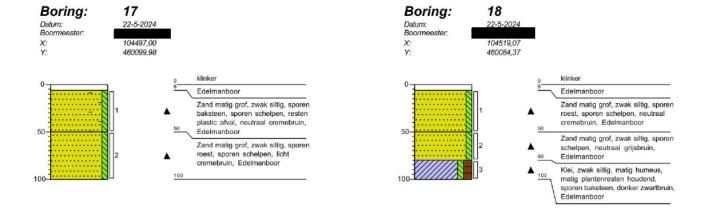


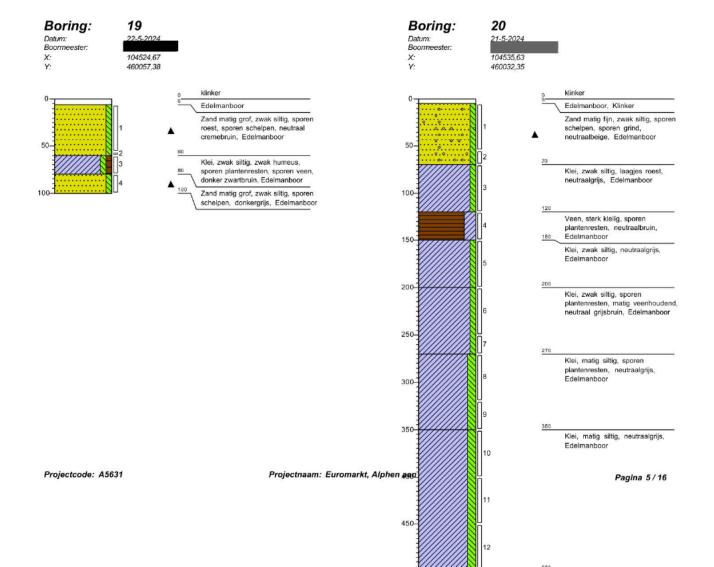


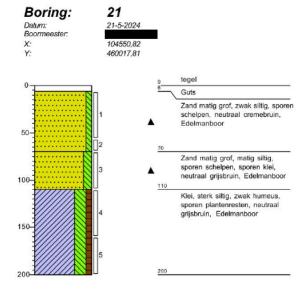


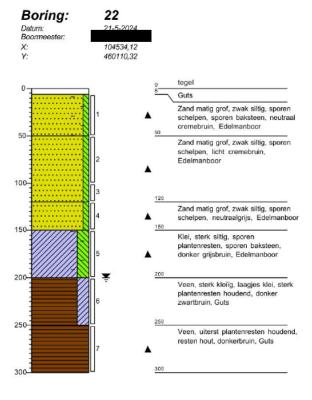


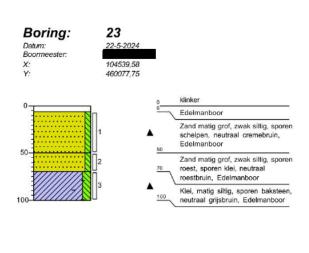


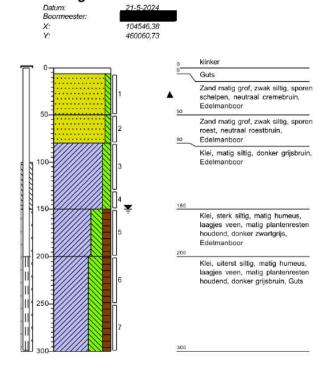


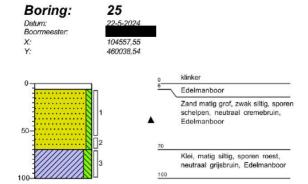


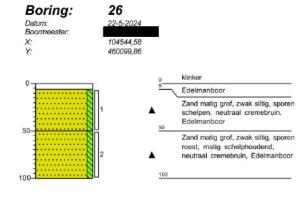


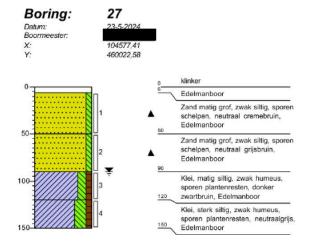


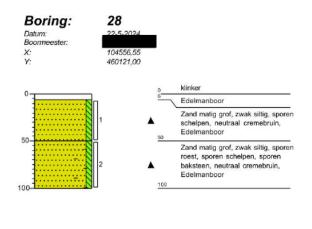


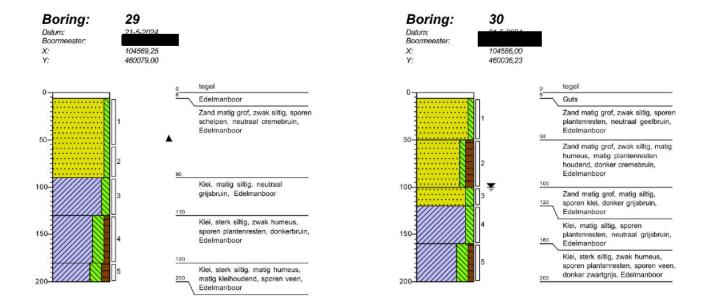


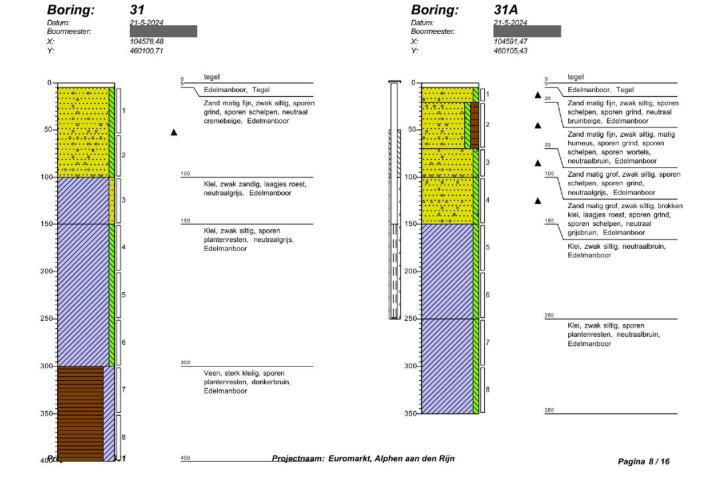


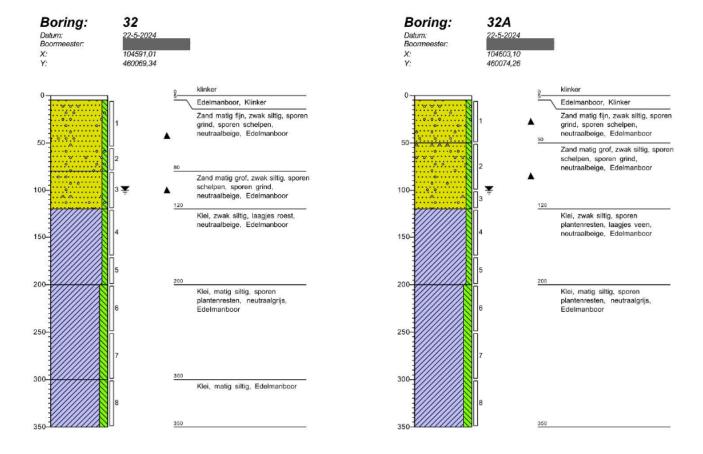


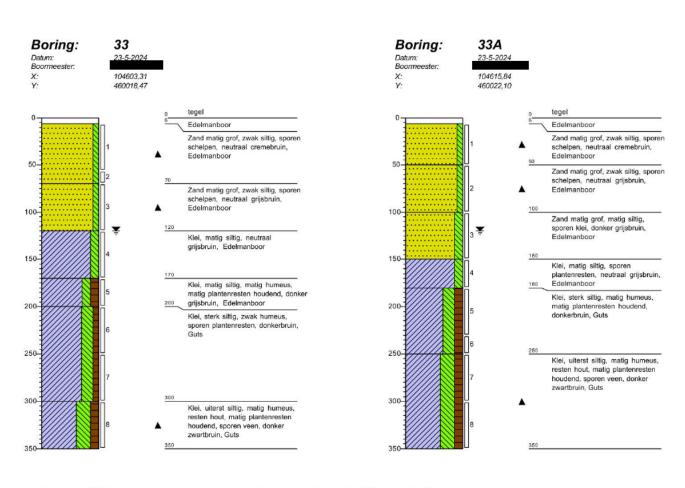


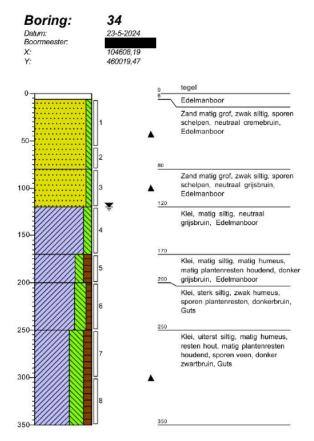

24

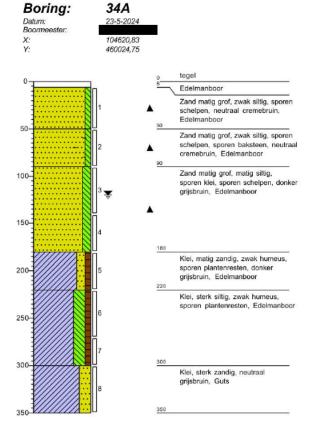

Boring:

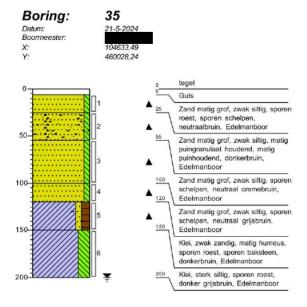


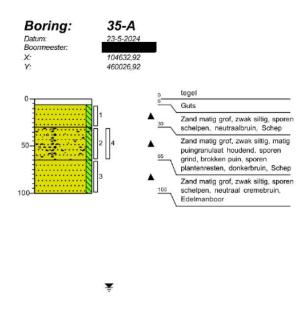


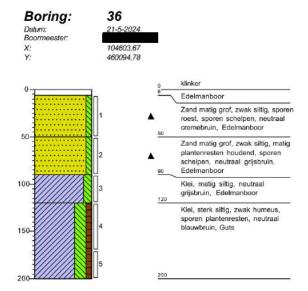


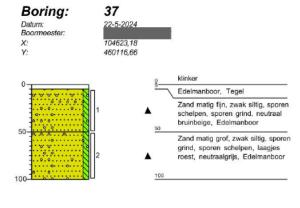


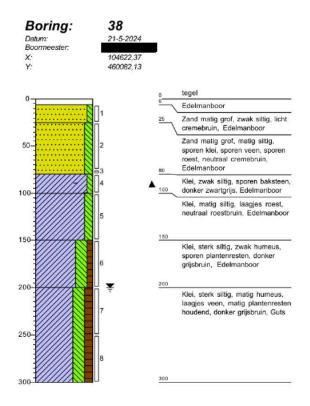


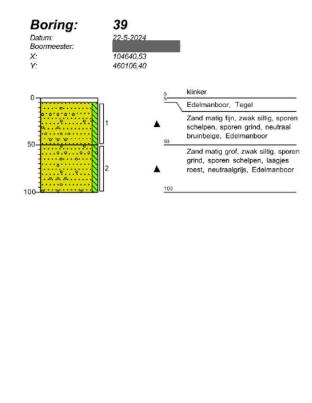


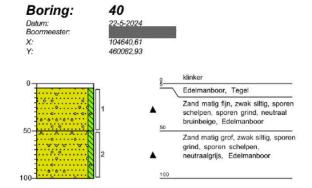


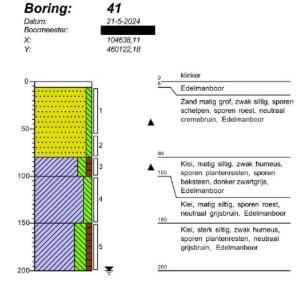


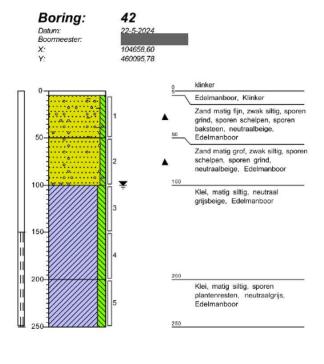


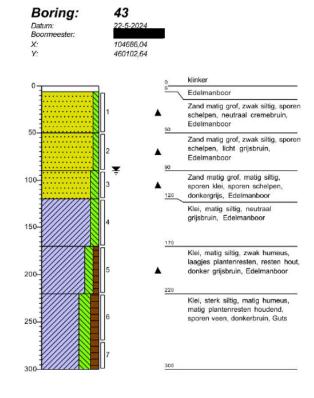


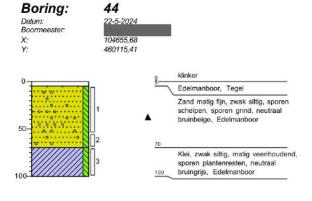


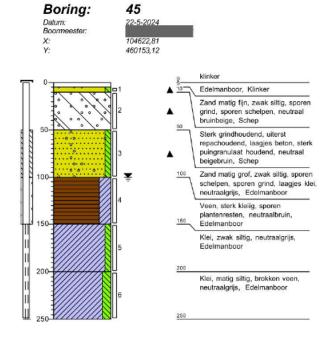


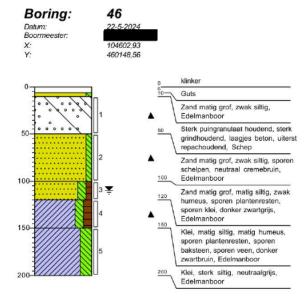


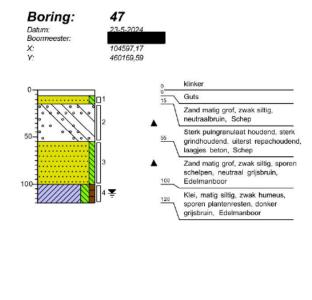


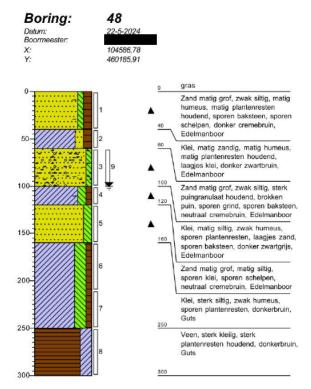


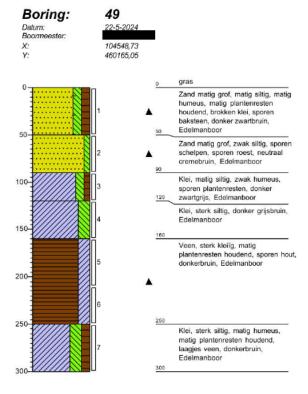


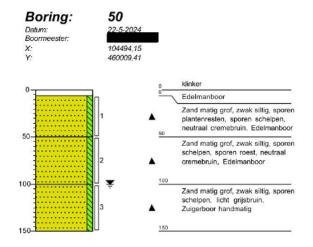


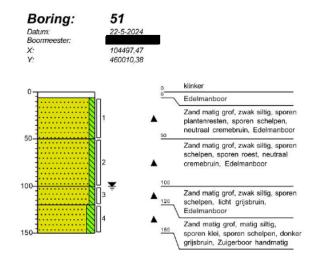


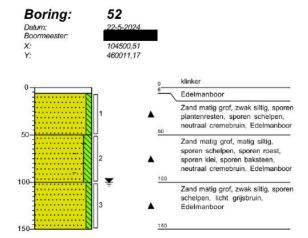


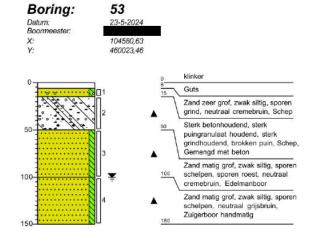


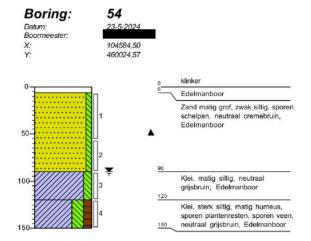


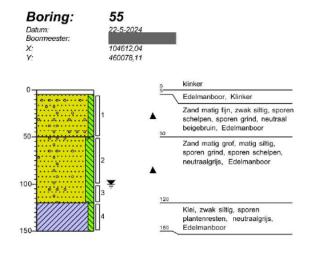


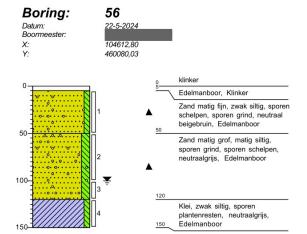


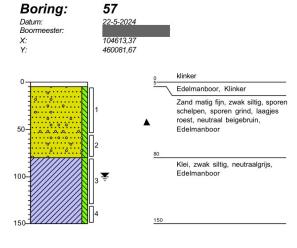












Legenda (conform NEN 5104)

zand afdichting

grind afdichting

filter

bentoniet/mikoliet/klei afdichting

grind klei geur O- geen geur Grind, siltig Klei, zwak siltig zwakke geur • matige geur Grind, zwak zandig Klei, matig siltig sterke geur uiterste geur Klei, sterk siltig Grind, matig zandig olie Grind, sterk zandig Klei, uiterst siltig ☐ geen olie-water reactie zwakke olie-water reactie Grind, uiterst zandig Klei, zwak zandig ■ matige olie-water reactie sterke olie-water reactie Klei, matig zandig - uiterste olie-water reactie p.i.d.-waarde zand Klei, sterk zandig ₿ >0 Zand, kleiïg >1 >10 Zand, zwak siltig >100 leem >1000 Zand, matig siltig Leem, zwak zandig >10000 Zand, sterk siltig Leem, sterk zandig monsters Zand, uiterst siltig geroerd monster overige toevoegingen ongeroerd monster zwak humeus volumering veen overig Veen, mineraalarm matig humeus bijzonder bestanddeel Veen, zwak kleiïg sterk humeus Gemiddeld hoogste grondwaterstand grondwaterstand Veen, sterk kleiïg zwak grindig Gemiddeld laagste grondwaterstand slib Veen, zwak zandig matig grindig Veen, sterk zandig sterk grindig peilbuis blinde buis casing hoogste grondwaterstand gemiddelde grondwaterstand laagste grondwaterstand

BIJLAGE 4.1 Certificaat grond

IDDS Milieu B.V.

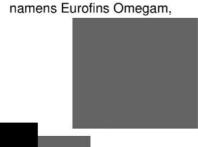
s-Gravendijckseweg 37 2201CZ NOORDWIJK ZH

Uw kenmerk : A5631-Euromarkt Alphen aan den Rijn

Ons kenmerk : Project 1743025 Validatieref. : 1743025_certificaat_v1 Opdrachtverificatiecode : FCLX-AVES-UGIW-IAOK

Bijlage(n) : 8 tabel(len) + 5 oliechromatogram(men) + 4 bijlage(n)

Amsterdam, 31 mei 2024


Hierbij zend ik u de resultaten van het laboratoriumonderzoek dat op uw verzoek is uitgevoerd in de door u aangeboden monsters.

De resultaten hebben uitsluitend betrekking op de monsters, zoals die door u voor analyse ter beschikking werden gesteld.

Het onderzoek is, met uitzondering van eventueel uitbesteed onderzoek, uitgevoerd door Eurofins Omegam. Informatie omtrent de gebruikte analysemethode(n) kunt u vinden in ons klantenportaal Mijn Lab onder "Info en Docs".

Ik wijs u erop dat het analysecertificaat alleen in zijn geheel mag worden gereproduceerd. Ik vertrouw erop uw opdracht volledig en naar tevredenheid te hebben uitgevoerd. Heeft u naar aanleiding van deze rapportage nog vragen, dan verzoek ik u contact op te nemen met onze klantenservice.

Hoogachtend,

Manager productie

Op dit certificaat zijn onze algemene voorwaarden van toepassing. Dit analysecertificaat mag niet anders dan in zijn geheel worden gereproduceerd.

ANALYSECER	RTIFICAAT
------------	-----------

1743025

Projectcode Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

Uw Monsterreferenties 8264295 = M05 35-A (30-65) **8264296** = M06 48 (60-100)

Opgegeven bemonsteringsdatum Ontvangstdatum opdracht	:	23/05/2024 24/05/2024	22/05/2024 24/05/2024	
Startdatum	:	24/05/2024	24/05/2024	
Monstercode	:	8264295	8264296	
Uw Matrix	;	Grond	Grond	
Monstervoorbewerking				
S AS3000 (steekmonster)		uitgevoerd	uitgevoerd	
S gewicht artefact	g	n.v.t.	n.v.t.	
S soort artefact		n.v.t.	n.v.t.	
S voorbewerking AS3000		uitgevoerd	uitgevoerd	
Algemeen onderzoek - fysisch				
S droge stof (asbest verdacht)	%	91,5	88,1	
S organische stof (gec. voor lutum)			1,1	
S lutumgehalte (pipetmethode)	% (m/m ds)		4,8	
Anorganische parameters - metale	n			
S barium (Ba)	mg/kg ds	99	60	
S cadmium (Cd)	mg/kg ds	< 0,20	< 0,20	
S kobalt (Co)	mg/kg ds	< 3,0	3,1	
S koper (Cu)	mg/kg ds	6,7	13	
S kwik (Hg) (niet vluchtig)	mg/kg ds	< 0,05	0,13	
S lood (Pb)	mg/kg ds	12	22	
S molybdeen (Mo)	mg/kg ds	< 1,5	< 1,5	
S nikkel (Ni)	mg/kg ds	9	9	
S zink (Zn)	mg/kg ds	37	76	
Organische parameters - niet arom	natisch			
S minerale olie (florisil clean-up)	mg/kg ds	< 35	100	
Organische parameters - aromatis	ch			
Polycyclische koolwaterstoffen:				
S naftaleen	mg/kg ds	< 0,05	< 0,05	
S fenantreen	mg/kg ds	< 0,05	4,6	
S antraceen	mg/kg ds	< 0,05	1,3	
S fluoranteen	mg/kg ds	0,07	3,9	
S benzo(a)antraceen	mg/kg ds	< 0,05	1,4	
S chryseen	mg/kg ds	0,06	1,6	
S benzo(k)fluoranteen	mg/kg ds	< 0,05	0,70	
S benzo(a)pyreen	mg/kg ds	0,05	0,93	
S benzo(ghi)peryleen	mg/kg ds	0,05	0,61	
S indeno(1,2,3-cd)pyreen	mg/kg ds	< 0,05	0,57	
S som PAK (10)	mg/kg ds	0,44	16	
Organische parameters - gehaloge	eneerd			
Polychloorbifenylen:				
S PCB -28	mg/kg ds	< 0,001	< 0,001	
S PCB-52	mg/kg ds	< 0,001	0,003	
S PCB -101	mg/kg ds	< 0,001	0,017	
S PCB -118	mg/kg ds	< 0,001	0,007	
S PCB -138	mg/kg ds	< 0,001	0,069	
S PCB -153	mg/kg ds	< 0,001	0,053	
S PCB -180	mg/kg ds	< 0,001	0,032	
S som PCBs (7)	mg/kg ds	0,005	0,18	

		 10		_	_		- 1				_
ΑN	JΔ	YS	-	(:	-	к		-	 Δ	Δ	

1743025

Projectcode Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

Uw Monsterreferenties

S PCB-153

S PCB-180

S som PCBs (7)

8264291 = MM01 08 (50-100) 16 (0-50) 17 (6-50) 28 (50-100)

Opgegeven bemonsteringsdatum Ontvangstdatum opdracht Startdatum Monstercode	:	21/05/2024 24/05/2024 24/05/2024 8264291	22/05/2024 24/05/2024 24/05/2024 8264292	21/05/2024 24/05/2024 24/05/2024 8264293
Uw Matrix	:	Grond	Grond	Grond
Monstervoorbewerking				
S AS3000 (steekmonster)		uitgevoerd	uitgevoerd	uitgevoerd
S gewicht artefact	g	n.v.t.	n.v.t.	n.v.t.
S soort artefact		n.v.t.	n.v.t.	n.v.t.
S voorbewerking AS3000		uitgevoerd	uitgevoerd	uitgevoerd
Algemeen onderzoek - fysisch				
S droge stof	%	89,8	87,1	89,3
S organische stof (gec. voor lutum)		0,5	1,6	0,6
S lutumgehalte (pipetmethode)	% (m/m ds)	9,7	17,6	< 1
Anorganische parameters - metale	en			
S barium (Ba)	mg/kg ds	26	41	< 20
S cadmium (Cd)	mg/kg ds	< 0,20	< 0,20	< 0,20
S kobalt (Co)	mg/kg ds	< 3,0	3,5	< 3,0
S koper (Cu)	mg/kg ds	5,4	6,2	< 5,0
S kwik (Hg) (niet vluchtig)	mg/kg ds	< 0,05	< 0,05	< 0,05
S lood (Pb)	mg/kg ds	< 10	11	< 10
S molybdeen (Mo)	mg/kg ds	< 1,5	< 1,5	< 1,5
S nikkel (Ni)	mg/kg ds	7	11	5
S zink (Zn)	mg/kg ds	24	31	< 20
Organische parameters - niet aron	natisch			
S minerale olie (florisil clean-up)	mg/kg ds	< 35	82	< 35
Organische parameters - aromatis	ch			
Polycyclische koolwaterstoffen:				
S naftaleen	mg/kg ds	< 0,05	< 0,05	< 0,05
S fenantreen	mg/kg ds	< 0,05	0,08	< 0,05
S antraceen	mg/kg ds	< 0,05	< 0,05	< 0,05
S fluoranteen	mg/kg ds	< 0,05	0,19	< 0,05
S benzo(a)antraceen	mg/kg ds	< 0,05	0,07	< 0,05
S chryseen	mg/kg ds	< 0,05	0,10	< 0,05
S benzo(k)fluoranteen	mg/kg ds	< 0,05	0,06	< 0,05
S benzo(a)pyreen	mg/kg ds	< 0,05	0,10	< 0,05
S benzo(ghi)peryleen	mg/kg ds	< 0,05	0,13	< 0,05
S indeno(1,2,3-cd)pyreen	mg/kg ds	< 0,05	0,12	< 0,05
S som PAK (10)	mg/kg ds	0,35	0,92	0,35
Organische parameters - gehaloge	eneerd			
Polychloorbifenylen:				
S PCB-28	mg/kg ds	< 0,001	< 0,001	< 0,001
S PCB-52	mg/kg ds	< 0,001	< 0,001	< 0,001
S PCB-101	mg/kg ds	< 0,001	< 0,001	< 0,001
S PCB-118	mg/kg ds	< 0,001	< 0,001	< 0,001
S PCB -138	mg/kg ds	< 0,001	0,003	< 0,001
C DCD 152		- 0.001	ດ໌ດດວ	- 0 001

< 0,001

< 0,001

0,005

0,002

0,002

0,010

< 0,001

< 0,001

0,005

Ref.: 1743025_certificaat_v1

mg/kg ds

mg/kg ds

mg/kg ds

Tabel 3 van 8

	NI			1/	0					-					_
А	N	А	L	Y	5	=	L	_	к		I F	I C	А	А	

1743025

Projectcode Uw project omschrijving Opdrachtgever A5631-Euromarkt Alphen aan den Rijn

: IDDS Milieu B.V.

Opgegeven bemonsteringsdatum Ontvangstdatum opdracht Startdatum Monstercode Uw Matrix	: : : :	21/05/2024 24/05/2024 24/05/2024 8264294 Grond	21/05/2024 24/05/2024 24/05/2024 8264297 Grond	21/05/2024 24/05/2024 24/05/2024 8264298 Grond
Monstervoorbewerking S AS3000 (steekmonster) S gewicht artefact S soort artefact Voorbewerking AS3000	g	uitgevoerd n.v.t. n.v.t. uitgevoerd	uitgevoerd n.v.t. n.v.t. uitgevoerd	uitgevoerd n.v.t. n.v.t. uitgevoerd
Algemeen onderzoek - fysisch S droge stof S organische stof (gec. voor lutum) S lutumgehalte (pipetmethode)	%) % (m/m ds) % (m/m ds)		67,7 7,9 11,0	71,0 5,1 21,1
Anorganische parameters - metale S barium (Ba) S cadmium (Cd) S kobalt (Co) S koper (Cu) S kwik (Hg) (niet vluchtig) S lood (Pb) S molybdeen (Mo) S nikkel (Ni) S zink (Zn)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds	< 20 < 0,20 < 3,0 < 5,0 < 0,05 < 10 < 1,5 8 23	220 0,38 11 34 0,45 130 < 1,5 38 120	240 0,37 13 37 0,38 82 1,5 42
Organische parameters - niet aron S minerale olie (florisil clean-up)	matisch mg/kg ds	< 35	< 35	< 35
Organische parameters - aromatis Polycyclische koolwaterstoffen: S naftaleen S fenantreen S antraceen S fluoranteen S benzo(a)antraceen S chryseen S benzo(k)fluoranteen S benzo(a)pyreen S benzo(ghi)peryleen S indeno(1,2,3-cd)pyreen S som PAK (10)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds	< 0,05 < 0,05	< 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05	< 0,05 0,06 < 0,05 0,10 0,05 0,09 < 0,05 0,05 < 0,05 < 0,05
Organische parameters - gehalog Polychloorbifenylen: S PCB -28 S PCB -52 S PCB -101 S PCB -118 S PCB -138 S PCB -153 S PCB -180 S som PCBs (7)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds	< 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001	< 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 0,005	< 0,001 < 0,001 0,004 < 0,001 0,018 0,013 0,009

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.

- De met een 'S' gemerkte analyses zijn door RvA geaccrediteerd (L086) en op basis van het schema AS 3000 erkend.

Opdrachtverificatiecode: FCLX-AVES-UGIW-IAOK

Tabel 4 van 8

ANALYSECERTIFICAAT

1743025

Projectcode Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

 Uw Monsterreferenties

 8264299 = MM09 04 (70-120) 06 (120-170) 11 (130-180) 16 (120-170)

 8264300 = MM10 20 (70-120) 27 (90-120) 29 (90-130) 31 (100-150)

 8264301 = MM11 42 (100-150) 43 (120-170) 45 (150-200) 47 (100-120)

Managhaman and assessed the se				
Uw Matrix	;	Grond	Grond	Grond
Monstercode	:	8264299	8264300	8264301
Startdatum	:	24/05/2024	24/05/2024	24/05/2024
Ontvangstdatum opdracht	:	24/05/2024	24/05/2024	24/05/2024
Opgegeven bemonsteringsdatum	:	21/05/2024	21/05/2024	22/05/2024

U١	W Wattix	•	Grond	Giona	Grond
M	onstervoorbewerking				
S	AS3000 (steekmonster)		uitgevoerd	uitgevoerd	uitgevoerd
S	gewicht artefact	g	n.v.t.	n.v.t.	n.v.t.
S	soort artefact		n.v.t.	n.v.t.	n.v.t.
S	voorbewerking AS3000		uitgevoerd	uitgevoerd	uitgevoerd
	•			Comm C anno Assertan	
	gemeen onderzoek - fysisch	•		=	
	droge stof	%	64,8	76,6	70,6
	organische stof (gec. voor lutum)			3,2	5,1
S	lutumgehalte (pipetmethode)	% (m/m ds)	28,2	26,1	23,0
٩r	norganische parameters - metale	n			
S	barium (Ba)	mg/kg ds	230	170	190
S	cadmium (Cd)	mg/kg ds	0,31	0,24	0,29
S	kobalt (Co)	mg/kg ds	12	15	13
S	koper (Cu)	mg/kg ds	26	19	22
S	kwik (Hg) (niet vluchtig)	mg/kg ds	0.18	0.07	0.15
S	lood (Pb)	mg/kg ds	45	25	37
S	molybdeen (Mo)	mg/kg ds	.0 < 1,5	< 1,5	< 1,5
S	nikkel (Ni)	mg/kg ds	44	43	38
S	zink (Zn)	mg/kg ds	90	79	82
0	ZITK (ZIT)	mg/kg us	90	19	02
Oı	rganische parameters - niet arom	natisch			
	minerale olie (florisil clean-up)	mg/kg ds	< 35	< 35	< 35
Po	rganische parameters - aromatis olycyclische koolwaterstoffen:				
	naftaleen	mg/kg ds	< 0,05	< 0,05	< 0,05
S	fenantreen	mg/kg ds	< 0,05	< 0,05	< 0,05
S	antraceen	mg/kg ds	< 0,05	< 0,05	< 0,05
S	fluoranteen	mg/kg ds	< 0,05	< 0,05	< 0,05
S	benzo(a)antraceen	mg/kg ds	< 0,05	< 0,05	< 0,05
S	chryseen	mg/kg ds	< 0,05	< 0,05	< 0,05
S	benzo(k)fluoranteen	mg/kg ds	< 0,05	< 0,05	< 0,05
S	benzo(a)pyreen	mg/kg ds	< 0,05	< 0,05	< 0,05
S	benzo(ghi)peryleen	mg/kg ds	< 0,05	< 0,05	< 0,05
S	indeno(1,2,3-cd)pyreen	mg/kg ds	< 0,05	< 0,05	< 0,05
S	som PAK (10)	mg/kg ds	0,35	0,35	0,35
	, ,		0,00		
	rganische parameters - gehaloge	neerd			
	olychloorbifenylen:				
	PCB -28	mg/kg ds	< 0,001	< 0,001	< 0,001
	PCB -52	mg/kg ds	< 0,001	< 0,001	< 0,001
S	PCB -101	mg/kg ds	< 0,001	< 0,001	< 0,001
S	PCB -118	mg/kg ds	< 0,001	< 0,001	< 0,001
S	PCB -138	mg/kg ds	< 0,001	< 0,001	0,008
S	PCB -153	mg/kg ds	< 0,001	< 0,001	0,008
Š	PCB -180	mg/kg ds	< 0,001	< 0,001	0,007
		3.75.0			0,026
S	som PCBs (7)	mg/kg ds	0,005	0,005	0,026

	NI	٨		v	C		D	т	ΙF	10			T
А	IN	А	_	1	J	·	п		ΙГ	ı	, А	А	

1743025

Projectcode Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

Uw Monsterreferenties

8264304 = MM14 06 (170-220) 11 (200-250) 20 (120-150) 22 (200-250) 31 (300-350) 45 (100-150) 49 (160-210)

8264305 = MM15 04 (160-200) 16 (250-300) 20 (270-320) 29 (180-200) 33A (250-300) 38 (250-300) 41 (150-200) 48 (160-210)

Or	gegeven bemonsteringsdatum	:	21/05/2024	21/05/2024	
	ntvangstdatum opdracht	:	24/05/2024	24/05/2024	
	artdatum		24/05/2024	24/05/2024	
	onstercode		8264304	8264305	
	v Matrix	:	Grond	Grond	
	v iviati ix	•	Grond	Grond	
Mo	onstervoorbewerking				
S	AS3000 (steekmonster)		uitgevoerd	uitgevoerd	
S	gewicht artefact	g	n.v.t.	n.v.t.	
S	soort artefact	9	n.v.t.	n.v.t.	
S	voorbewerking AS3000		uitgevoerd	uitgevoerd	
O	Voorbewerking / Coooo		ungevociu	ungevoera	
ΑI	gemeen onderzoek - fysisch				
S		%	49,8	63,3	
S	organische stof (gec. voor lutum)		17,5	7,8	
S	lutumgehalte (pipetmethode)	% (m/m ds)	26,8	22,8	
3	luturigenate (pipetirietriode)	76 (III/III US)	20,0	22,0	
	norganische parameters - metale				
S	barium (Ba)	mg/kg ds	240	130	
S	cadmium (Cd)	mg/kg ds	0,45	0,33	
S	kobalt (Co)	mg/kg ds	8,2	11	
S	koper (Cu)	mg/kg ds	24	21	
S	kwik (Hg) (niet vluchtig)	mg/kg ds	0,23	0,11	
S			32	24	
	lood (Pb)	mg/kg ds			
S	molybdeen (Mo)	mg/kg ds	< 1,5	< 1,5	
S	nikkel (Ni)	mg/kg ds	36	37	
S	zink (Zn)	mg/kg ds	86	81	
0	waniasha navanataya niat ayan				
	ganische parameters - niet aron		100	25	
S	minerale olie (florisil clean-up)	mg/kg ds	160	< 35	
0	ganische parameters - aromatis	oh			
	olycyclische koolwaterstoffen:	CII			
	naftaleen	mg/kg ds	< 0,05	< 0,05	
S					
S	fenantreen	mg/kg ds	< 0,05	< 0,05	
S	antraceen	mg/kg ds	< 0,05	< 0,05	
S	fluoranteen	mg/kg ds	0,06	< 0,05	
S	benzo(a)antraceen	mg/kg ds	< 0,05	< 0,05	
S	chryseen	mg/kg ds	0,06	< 0,05	
S	benzo(k)fluoranteen	mg/kg ds	< 0,05	< 0,05	
S	benzo(a)pyreen	mg/kg ds	< 0,05	< 0.05	
	/-/-)		•		
S	benzo(ghi)pervleen	ma/ka ds	< 0.05	< 0.05	
S	benzo(ghi)peryleen	mg/kg ds mg/kg ds	< 0,05 < 0.05	< 0,05 < 0.05	
S	indeno(1,2,3-cd)pyreen	mg/kg ds	< 0,05	< 0,05	
S S	indeno(1,2,3-cd)pyreen som PAK (10)	mg/kg ds mg/kg ds	< 0,05	< 0,05	
S S Or	indeno(1,2,3-cd)pyreen som PAK (10) ganische parameters - gehaloge	mg/kg ds mg/kg ds	< 0,05	< 0,05	
S S Or Po	indeno(1,2,3-cd)pyreen som PAK (10) ganische parameters - gehaloge blychloorbifenylen:	mg/kg ds mg/kg ds eneerd	< 0,05 0,40	< 0,05 0,35	
S S Or Po S	indeno(1,2,3-cd)pyreen som PAK (10) ganische parameters - gehaloge blychloorbifenylen: PCB -28	mg/kg ds mg/kg ds eneerd mg/kg ds	< 0,05 0,40 < 0,001	< 0,05 0,35 < 0,001	
S S Or PC S S	indeno(1,2,3-cd)pyreen som PAK (10) ganische parameters - gehaloge blychloorbifenylen: PCB -28 PCB -52	mg/kg ds mg/kg ds eneerd mg/kg ds mg/kg ds	< 0,05 0,40 < 0,001 < 0,001	< 0,05 0,35 < 0,001 0,001	
S S Or PC S S S	indeno(1,2,3-cd)pyreen som PAK (10) ganische parameters - gehaloge plychloorbifenylen: PCB -28 PCB -52 PCB -101	mg/kg ds mg/kg ds eneerd mg/kg ds mg/kg ds mg/kg ds	< 0,05 0,40 < 0,001 < 0,001 0,004	< 0,05 0,35 < 0,001 0,001 0,003	
S S Or P S S S S S	indeno(1,2,3-cd)pyreen som PAK (10) ganische parameters - gehaloge slychloorbifenylen: PCB -28 PCB -52 PCB -101 PCB -118	mg/kg ds mg/kg ds eneerd mg/kg ds mg/kg ds mg/kg ds mg/kg ds	< 0,05 0,40 < 0,001 < 0,001 0,004 0,001	< 0,05 0,35 < 0,001 0,001 0,003 < 0,001	
S S Or POS S S S S S	indeno(1,2,3-cd)pyreen som PAK (10) ganische parameters - gehaloge plychloorbifenylen: PCB -28 PCB -52 PCB -101	mg/kg ds mg/kg ds eneerd mg/kg ds mg/kg ds mg/kg ds	< 0,05 0,40 < 0,001 < 0,001 0,004	< 0,05 0,35 < 0,001 0,001 0,003 < 0,001 0,010	
S S Or POS S S S S S	indeno(1,2,3-cd)pyreen som PAK (10) ganische parameters - gehaloge slychloorbifenylen: PCB -28 PCB -52 PCB -101 PCB -118	mg/kg ds mg/kg ds eneerd mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds	< 0,05 0,40 < 0,001 < 0,001 0,004 0,001	< 0,05 0,35 < 0,001 0,001 0,003 < 0,001	
S S Or P S S S S S S S	indeno(1,2,3-cd)pyreen som PAK (10) ganische parameters - gehaloge slychloorbifenylen: PCB -28 PCB -52 PCB -101 PCB -118 PCB -138 PCB -153	mg/kg ds mg/kg ds eneerd mg/kg ds	< 0,05 0,40 < 0,001 < 0,001 0,004 0,001 0,012 0,011	< 0,05 0,35 < 0,001 0,001 0,003 < 0,001 0,010 0,009	
S S Or P S S S S S S S S	indeno(1,2,3-cd)pyreen som PAK (10) ganische parameters - gehaloge olychloorbifenylen: PCB -28 PCB -52 PCB -101 PCB -118 PCB -138	mg/kg ds mg/kg ds eneerd mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds	< 0,05 0,40 < 0,001 < 0,001 0,004 0,001 0,012	< 0,05 0,35 < 0,001 0,001 0,003 < 0,001 0,010	

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.

- De met een 'S' gemerkte analyses zijn door RvA geaccrediteerd (L086) en op basis van het schema AS 3000 erkend.

Opdrachtverificatiecode: FCLX-AVES-UGIW-IAOK

A .			, 0		\sim		о.					-
ΑN	ИΑ	L	15	=	C	=	к	 г	ı	А	А	

1743025

Projectcode Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

Uw Monsterreferenties 8264302 = M12 34 (170-200) 8264303 = M13 35 (120-150)

	ogegeven bemonsteringsdatum	:	23/05/2024	21/05/2024	
	ntvangstdatum opdracht	:	24/05/2024	24/05/2024	
St	artdatum	:	24/05/2024	24/05/2024	
Mo	onstercode	:	8264302	8264303	
Uv	v Matrix	:	Grond	Grond	
Ma	onstervoorbewerking				
S	AS3000 (steekmonster)		uitgevoerd	uitgevoerd	
S	gewicht artefact	g	n.v.t.	n.v.t.	
S	soort artefact	9	n.v.t.	n.v.t.	
	voorbewerking AS3000		uitgevoerd	uitgevoerd	
A.					
	gemeen onderzoek - fysisch	0/	EC 0	66.4	
S	droge stof	%	56,3	66,4	
S	organische stof (gec. voor lutum)		10,9	10,2	
S	lutumgehalte (pipetmethode)	% (m/m ds)	26,5	18,4	
Ar	norganische parameters - metale				
S	barium (Ba)	mg/kg ds	250	200	
S	cadmium (Cd)	mg/kg ds	0,39	0,88	
S	kobalt (Co)	mg/kg ds	10 [°]	8,5	
S	koper (Cu)	mg/kg ds	20	54	
S	kwik (Hg) (niet vluchtig)	mg/kg ds	0,07	0.97	
S	lood (Pb)	mg/kg ds	22	260	
S	molybdeen (Mo)	mg/kg ds	< 1,5	< 1,5	
S	nikkel (Ni)	mg/kg ds	43	28	
S	zink (Zn)	mg/kg ds	78	230	
0	21111 (211)	mg/kg d3	70	200	
Ar	norganische parameters - overig				
S	cyanide (complex)	mg/kg ds	< 1	< 1	
S	cyanide (totaal)	mg/kg ds	< 3	< 3	
S	cyanide (vrij)	mg/kg ds	< 2	< 2	
Or	ganische parameters - niet aron	natisch			
S	minerale olie (florisil clean-up)	mg/kg ds	48	44	
0		- L			
Po	ganische parameters - aromatis olycyclische koolwaterstoffen:	Cn			
S	naftaleen	mg/kg ds	< 0,05	< 0,05	
S	fenantreen	mg/kg ds	< 0,05	0,27	
S	antraceen	mg/kg ds	< 0,05	0,15	
_	fluoranteen	mg/kg ds	< 0,05	0,85	
S	benzo(a)antraceen	mg/kg ds	< 0,05 < 0,05	0,45	
S	chryseen	mg/kg ds	< 0,05 < 0,05	0,45	
S					
	benzo(k)fluoranteen	mg/kg ds	< 0,05	0,31 0.51	
S	benzo(a)pyreen	mg/kg ds	< 0,05	0,51	
S	benzo(ghi)peryleen	mg/kg ds	< 0,05	0,31	
S	indeno(1,2,3-cd)pyreen	mg/kg ds	< 0,05	0,31	
S	som PAK (10)	mg/kg ds	0,35	3,7	

ANALYSECERTIFICAAT

Projectcode : 1743025

Uw project omschrijving : A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever : IDDS Milieu B.V.

Uw Monsterreferenties 8264302 = M12 34 (170-200) **8264303 =** M13 35 (120-150)

 Opgegeven bemonsteringsdatum
 :
 23/05/2024
 21/05/2024

 Ontvangstdatum opdracht
 :
 24/05/2024
 24/05/2024

 Startdatum
 :
 24/05/2024
 24/05/2024

 Monstercode
 :
 8264302
 8264303

 Uw Matrix
 :
 Grond
 Grond

Organische parameters - gehalogeneerd

Pal	Ich	loorbifenvi	lon.
1 01	<i>'' '' '' ''</i>	OUIDIIGIIVI	CII.

nyoniooronenyien.			
PCB -28	mg/kg ds	< 0,001	< 0,001
PCB -52	mg/kg ds	< 0,001	< 0,001
PCB -101	mg/kg ds	< 0,001	< 0,001
PCB -118	mg/kg ds	< 0,001	< 0,001
PCB -138	mg/kg ds	< 0,001	< 0,001
PCB -153	mg/kg ds	< 0,001	< 0,001
PCB -180	mg/kg ds	< 0,001	< 0,001
som PCBs (7)	mg/kg ds	0,005	0,005
	PCB -28 PCB -52 PCB -101 PCB -118 PCB -138 PCB -153 PCB -180 som PCBs (7)	PCB -28 mg/kg ds PCB -52 mg/kg ds PCB -101 mg/kg ds PCB -118 mg/kg ds PCB -138 mg/kg ds PCB -153 mg/kg ds PCB -180 mg/kg ds	PCB -28 mg/kg ds < 0,001

Projectcode : 1743025

Uw project omschrijving : A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever : IDDS Milieu B.V.

Opmerkingen m.b.t. analyses

Opmerking(en) algemeen

De volgende informatie is indien van toepassing verstrekt door de opdrachtgever:

Project omschrijving, Monsterreferentie(s), Opgegeven bemonsteringsdatum, Matrix, Monsterdiepte, Potnr (Barcode), Veldgegevens, Veldwaarnemingen en Bemonsteringsdata. De opgegeven bemonsteringsdatum kan van invloed zijn op de geldigheid van de resultaten.

Organische stof gehalte (gecorrigeerd voor lutum en vrij ijzer in de vorm van Fe2O3)

Het organische stofgehalte is gecorrigeerd voor het in het analysecertificaat gerapporteerde lutumgehalte. Indien het lutumgehalte niet is gerapporteerd is de correctie uitgevoerd met een lutumgehalte van 5,4% (gemiddeld lutumgehalte Nederlandse bodem, AS3010/AS3210, prestatieblad organische stofgehalte in grond/waterbodem). Indien het vrij ijzergehalte is bepaald en groter is dan 5 % m/m, is bij de berekening van het organische stof gecorrigeerd voor dat gehalte aan vrij ijzer.

Sommatie van concentraties voor groepsparameters

De sommatie is uitgevoerd volgens AS3000 paragraaf 2.5.2 en bijlage 3.

Uw referentie : M06 48 (60-100) Monstercode : 8264296

Opmerking(en) bij resultaten:

PCB -138: - Bij deze gaschromatografische analyse valt PCB 138 samen met PCB 163.

Uw referentie : MM02 34A (50-90) 42 (5-50) 48 (0-40) 49 (0-50)

Monstercode : 8264292

Opmerking(en) bij resultaten:

PCB -138: - Bij deze gaschromatografische analyse valt PCB 138 samen met PCB 163.

Uw referentie : MM08 38 (80-100) 41 (80-100) 46 (120-150) 48 (100-120)

Monstercode : 8264298

Opmerking(en) bij resultaten:

PCB -138: - Bij deze gaschromatografische analyse valt PCB 138 samen met PCB 163.

Uw referentie : MM11 42 (100-150) 43 (120-170) 45 (150-200) 47 (100-120)

Monstercode : 8264301

Opmerking(en) bij resultaten:

PCB -138: - Bij deze gaschromatografische analyse valt PCB 138 samen met PCB 163.

Uw referentie : MM14 06 (170-220) 11 (200-250) 20 (120-150) 22 (200-250) 31 (300-350) 45

(100-150) 49 (160-210)

Monstercode : 8264304

Opmerking(en) bij resultaten:

PCB -138: - Bij deze gaschromatografische analyse valt PCB 138 samen met PCB 163.

Uw referentie : MM15 04 (160-200) 16 (250-300) 20 (270-320) 29 (180-200) 33A (250-300) 38

(250-300) 41 (150-200) 48 (160-210)

Monstercode : 8264305

Opmerking(en) bij resultaten:

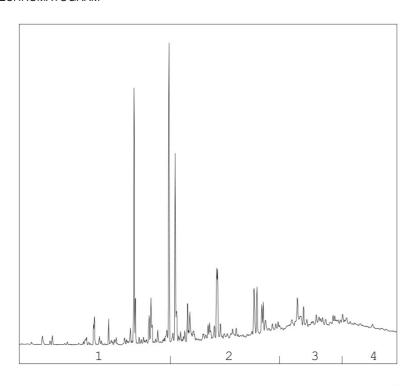
PCB -138: - Bij deze gaschromatografische analyse valt PCB 138 samen met PCB 163.

Opdrachtverificatiecode: FCLX-AVES-UGIW-IAOK

Ref.: 1743025_certificaat_v1

OLIE-ONDERZOEK

Monstercode : 8264296


Uw project : A5631-Euromarkt Alphen aan den Rijn

Uw project omschrijving Uw referentie

: M06 48 (60-100)

Methode : minerale olie (florisil clean-up)

OLIECHROMATOGRAM

oliefractieverdeling

OLIEFRACTIEVERDELING

1)	fractie > C10 - C19	16 %
2)	fractie C19 - C29	33 %
3)	fractie C29 - C35	31 %
4)	fractie C35 -< C40	21 %

minerale olie gehalte: 100 mg/kg ds

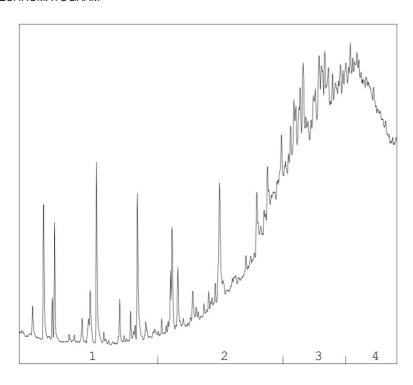
Minerale olie

Interpretatie: raadpleeg voor de typering van de oliesoort de OMEGAM oliebibliotheek.

De hoogte van de signalen is geen maat voor de concentratie van de olie in het monster. (Het chromatogram heeft een variabele schaalindeling)

OLIE-ONDERZOEK

Monstercode : 8264292


: A5631-Euromarkt Alphen aan den Rijn

Uw project omschrijving Uw referentie

: MM02 34A (50-90) 42 (5-50) 48 (0-40) 49 (0-50) : minerale olie (florisil clean-up)

Methode

OLIECHROMATOGRAM

oliefractieverdeling

OLIEFRACTIEVERDELING

1)	fractie > C10 - C19	3 %
2)	fractie C19 - C29	22 %
3)	fractie C29 - C35	41 %
4)	fractie C35 -< C40	34 %

minerale olie gehalte: 82 mg/kg ds

Minerale olie

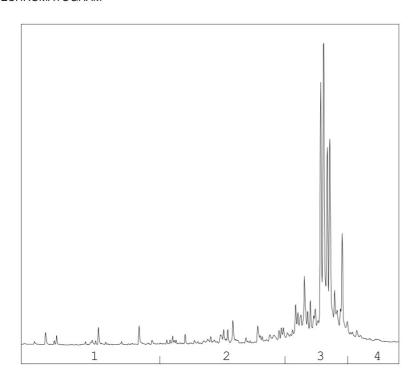
Interpretatie: raadpleeg voor de typering van de oliesoort de OMEGAM oliebibliotheek.

De hoogte van de signalen is geen maat voor de concentratie van de olie in het monster. (Het chromatogram heeft een variabele schaalindeling)

OLIE-ONDERZOEK

Monstercode : 8264304

Uw project : A5631-Euromarkt Alphen aan den Rijn


omschrijving Uw referentie

: MM14 06 (170-220) 11 (200-250) 20 (120-150) 22 (200-250) 31 (300-350) 45 (100-150) 49

(160-210)

Methode : minerale olie (florisil clean-up)

OLIECHROMATOGRAM

oliefractieverdeling

OLIEFRACTIEVERDELING

1) fractie > C10 - C19 3 % 2) fractie C19 - C29 14 % 3) fractie C29 - C35 75 % 4) fractie C35 -< C40 8 %

minerale olie gehalte: 160 mg/kg ds

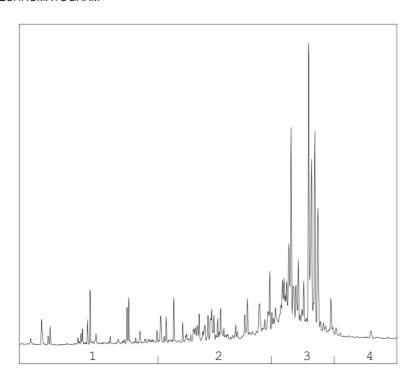
Minerale olie

Interpretatie: raadpleeg voor de typering van de oliesoort de OMEGAM oliebibliotheek.

De hoogte van de signalen is geen maat voor de concentratie van de olie in het monster. (Het chromatogram heeft een variabele schaalindeling)

OLIE-ONDERZOEK

Monstercode : 8264302


Uw project : A5631-Euromarkt Alphen aan den Rijn

Uw project omschrijving Uw referentie

: M12 34 (170-200)

Methode : minerale olie (florisil clean-up)

OLIECHROMATOGRAM

oliefractieverdeling

OLIEFRACTIEVERDELING

1)	fractie > C10 - C19	3 %
2)	fractie C19 - C29	19 %
3)	fractie C29 - C35	78 %
4)	fractie C35 -< C40	<1 %

minerale olie gehalte: 48 mg/kg ds

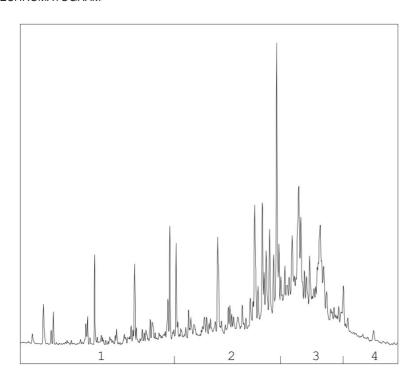
Minerale olie

Interpretatie: raadpleeg voor de typering van de oliesoort de OMEGAM oliebibliotheek.

De hoogte van de signalen is geen maat voor de concentratie van de olie in het monster. (Het chromatogram heeft een variabele schaalindeling)

OLIE-ONDERZOEK

Monstercode : 8264303


Uw project : A5631-Euromarkt Alphen aan den Rijn

omschrijving Uw referentie

: M13 35 (120-150)

Methode : minerale olie (florisil clean-up)

OLIECHROMATOGRAM

oliefractieverdeling

OLIEFRACTIEVERDELING

minerale olie gehalte: 44 mg/kg ds

Minerale olie

Interpretatie: raadpleeg voor de typering van de oliesoort de OMEGAM oliebibliotheek.

De hoogte van de signalen is geen maat voor de concentratie van de olie in het monster. (Het chromatogram heeft een variabele schaalindeling)

ANALYSECERTIFICAAT

1743025

Projectcode Uw project omschrijving Opdrachtgever A5631-Euromarkt Alphen aan den Rijn

IDDS Milieu B.V.

Barcodeschema's

Monstercode	Uw referentie	uw monsterref.	uw diepte	uw barcode
8264295	M05 35-A (30-65)	35-A	0.3-0.65	4631891AA
8264296	M06 48 (60-100)	48	0.6-1	4559141AA
8264291	MM01 08 (50-100) 16 (0-50) 17 (6-50) 28 (50-100)	16 08 17 28	0-0.5 0.5-1 0.06-0.5 0.5-1	4631625AA 4631893AA 4559130AA 4631516AA
3264292	MM02 34A (50-90) 42 (5-50) 48 (0-40) 49 (0-50)	42 49 48 34A	0.05-0.5 0-0.5 0-0.4 0.5-0.9	4631448AA 4559123AA 4559111AA 4631738AA
8264293	MM03 02 (50-80) 04 (6-56) 10 (6-50) 20 (5-55)	20 04 10 02	0.05-0.55 0.06-0.56 0.06-0.5 0.5-0.8	4559616AA 4631650AA 4559347AA 4559305AA
3264294	MM04 30 (50-100) 36 (6-50) 40 (50-100) 45 (50-100)	30 36 40 45	0.5-1 0.06-0.5 0.5-1 0.5-1	4631306AA 4631280AA 4631892AA 4631427AA
8264297	MM07 18 (80-100) 22 (150-200) 23 (70-100)	22 18 23	1.5-2 0.8-1 0.7-1	4631617AA 4559146AA 4559115AA
8264298	MM08 38 (80-100) 41 (80-100) 46 (120-150) 48 (100-120)	41 38 48 46	0.8-1 0.8-1 1-1.2 1.2-1.5	4631292AA 4631519AA 4559136AA 4632051AA
8264299	MM09 04 (70-120) 06 (120-170) 11 (130-180) 16 (120-170)	11 04 06 16	1.3-1.8 0.7-1.2 1.2-1.7 1.2-1.7	4559630AA 4631674AA 4631539AA 4631594AA
8264300	MM10 20 (70-120) 27 (90-120) 29 (90-130) 31 (100-150)	20 31 29 27	0.7-1.2 1-1.5 0.9-1.3 0.9-1.2	4559618AA 4559639AA 4631287AA 4631806AA
8264301	MM11 42 (100-150) 43 (120-170) 45 (150-200) 47 (100-120)	42 45 43 47	1-1.5 1.5-2 1.2-1.7 1-1.2	4631439AA 4631447AA 4632044AA 4631315AA
8264304	MM14 06 (170-220) 11 (200-250) 20 (120-150) 22 (200-250) 31 (300-350) 45 (100-150) 49 (160-210)	11 20 31 06 22 45 49	2-2.5 1.2-1.5 3-3.5 1.7-2.2 2-2.5 1-1.5 1.6-2.1	4559631AA 4559598AA 4559640AA 4631518AA 4631585AA 4631453AA 4559119AA

Bijlage 2 van 4

	ANALYSECERTIFI	CAAT		
Projectcod Uw project Opdrachtg	omschrijving : A5631-Euromarkt Alphen aa	n den Rijn		
8264305	MM15 04 (160-200) 16 (250-300) 20 (270-320) 29	20	2.7-3.2	4559613AA
	(180-200) 33A (250-300) 38 (250-300) 41 (150-200) 48 (160-210)	04 16	1.6-2 2.5-3	4560358AA 4631619AA
	(100-210)	29	1.8-2	4631275AA
		41	1.5-2	4631289AA
		38	2.5-3	4631510AA
		48	1.6-2.1	4559126AA
		33A	2.5-3	4631723AA
8264302	M12 34 (170-200)	34	1.7-2	4631682AA
8264303	M13 35 (120-150)	35	1.2-1.5	4631511AA

Opdrachtverificatiecode: FCLX-AVES-UGIW-IAOK

Ref.: 1743025_certificaat_v1

Bijlage 3 van 4

ANALYSECERTIFICAAT

Projectcode 1743025

Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

IDDS Milieu B.V. **Opdrachtgever**

Analysemethoden Grond (AS3000)

AS3000

In dit analysecertificaat zijn de met 'S' gemerkte analyses uitgevoerd volgens de analysemethoden beschreven in het "Accreditatieschema Laboratoriumanalyses voor grond-, waterbodem- en grondwateronderzoek (AS SIKB 3000)". Het laboratoriumonderzoek is uitgevoerd volgens de onderstaande analysemethoden. Deze analyses zijn vastgelegd in het geldende accreditatie-certificaat met bijbehorende verrichtingenlijst L086 van Eurofins Omegam BV.

AS3000 (steekmonster) Conform AS3000 en NEN-EN 16179 Droge stof (asbest verdacht) Conform AS3010 prestatieblad 2

Organische stof (gec. voor lutum) Conform AS3010 prestatieblad 3 en gelijkwaardig aan NEN 5754 Lutumgehalte (pipetmethode) Conform AS3010 prestatieblad 4; gelijkwaardig aan NEN 5753

Barium (Ba) Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Cadmium (Cd) Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Kobalt (Co) Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie Koper (Cu)

conform NEN 6961

Kwik (Hg) (niet vluchtig) Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie Lood (Pb)

conform NEN 6961

Molybdeen (Mo) Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie Nikkel (Ni)

conform NEN 6961

Zink (Zn) Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Minerale olie (florisil clean-up) Conform AS3010 prestatieblad 7 Conform AS3010 prestatieblad 6 **PAKs PCBs** Conform AS3010 prestatieblad 8

Analysemethoden Grond (AS3000)

AS3000

In dit analysecertificaat zijn de met 'S' gemerkte analyses uitgevoerd volgens de analysemethoden beschreven in het "Accreditatieschema Laboratoriumanalyses voor grond-, waterbodem- en grondwateronderzoek (AS SIKB 3000)". Het laboratoriumonderzoek is uitgevoerd volgens de onderstaande analysemethoden. Deze analyses zijn vastgelegd in het geldende accreditatie-certificaat met bijbehorende verrichtingenlijst L086 van Eurofins Omegam BV.

voorbewerking AS3000 Conform AS3000 en NEN-EN 16179 Conform AS3010 prestatieblad 2 Droge stof

Conform AS3010 prestatieblad 3 en gelijkwaardig aan NEN 5754 Organische stof (gec. voor lutum) Lutumgehalte (pipetmethode) Conform AS3010 prestatieblad 4; gelijkwaardig aan NEN 5753

Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie Barium (Ba) conform NEN 6961

Cadmium (Cd) Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie conform NEN 6961

Kobalt (Co) Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie conform NEN 6961

Koper (Cu) Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie conform NEN 6961

Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie Kwik (Hg) (niet vluchtig) conform NEN 6961

Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie Lood (Pb) conform NEN 6961

Bijlage 4 van 4

ΑN	Α	L	Υ	s	Ε	С	Ε	R	Т	ı	F	ı	С	Α	Α	т	

Projectcode 1743025

Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

IDDS Milieu B.V. **Opdrachtgever**

Molybdeen (Mo) : Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Nikkel (Ni) Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie

conform NEN 6961

Conform AS3010 prestatieblad 5 en NEN-EN-ISO 17294-2 en destructie Zink (Zn)

conform NEN 6961

Cyanide complex Conform AS3040 prestatieblad 1 Totaal cyanide Conform AS3040 prestatieblad 1 Conform AS3040 prestatieblad 1 Vrij cyanide Conform AS3010 prestatieblad 7 Minerale olie (florisil clean-up) **PAKs** Conform AS3010 prestatieblad 6 **PCBs** Conform AS3010 prestatieblad 8

Opdrachtverificatiecode: FCLX-AVES-UGIW-IAOK

Ref.: 1743025_certificaat_v1

BIJLAGE 4.2

Certificaat grondwater

IDDS Milieu B.V.

s-Gravendijckseweg 37 2201CZ NOORDWIJK ZH

Uw kenmerk : A5631-Euromarkt Alphen aan den Rijn

Ons kenmerk : Project 1746018
Validatieref. : 1746018_certificaat_v1
Opdrachtverificatiecode: FGYG-VDXU-YOAK-VSPP
Bijlage(n) : 4 tabel(len) + 2 bijlage(n)

Amsterdam, 3 juni 2024

Hierbij zend ik u de resultaten van het laboratoriumonderzoek dat op uw verzoek is uitgevoerd in de door u aangeboden monsters.

De resultaten hebben uitsluitend betrekking op de monsters, zoals die door u voor analyse ter beschikking werden gesteld.

Het onderzoek is, met uitzondering van eventueel uitbesteed onderzoek, uitgevoerd door Eurofins Omegam. Informatie omtrent de gebruikte analysemethode(n) kunt u vinden in ons klantenportaal Mijn Lab onder "Info en Docs".

Ik wijs u erop dat het analysecertificaat alleen in zijn geheel mag worden gereproduceerd. Ik vertrouw erop uw opdracht volledig en naar tevredenheid te hebben uitgevoerd. Heeft u naar aanleiding van deze rapportage nog vragen, dan verzoek ik u contact op te nemen met onze klantenservice.

Hoogachtend, namens Eurofins Omegam,

Manager productie

Op dit certificaat zijn onze algemene voorwaarden van toepassing. Dit analysecertificaat mag niet anders dan in zijn geheel worden gereproduceerd.

Eurofins Omegam B.V. H.J.E. Wenckebachweg 120 NL-1114 AD Amsterdam-Duivendrecht Nederland T +31-(0)20-597 66 80

@eurofins.com
www.eurofins.nl

Ref.: 1746018_certificaat_v1

ANALYSECERTIFICAAT

1746018

Projectcode Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

Uw Monsterreferenties 8272099 = 11-1-1 11 (150-250) 8272100 = 24-1-1 24 (200-300)

Opgegeven bemonsteringsdatum Ontvangstdatum opdracht Startdatum Monstercode Uw Matrix	: : : :	29/05/2024 29/05/2024 29/05/2024 8272099 Grondwater	29/05/2024 29/05/2024 29/05/2024 8272100 Grondwater	29/05/2024 29/05/2024 29/05/2024 8272102 Grondwater
Anorganische parameters - metale	n			
Metalen ICP-MS (opgelost):				
S barium (Ba)	μg/l	320	210	210
S cadmium (Cd)	μg/l	< 0,2	< 0,2	< 0,2
S kobalt (Co)	μg/l	< 2	14	2,5
S koper (Cu)	μg/l	< 2	5,0	< 2
S Kwik (Hg) (niet vluchtig)	μg/l	< 0,05	< 0,05	< 0,05
S lood (Pb)	μg/l	< 2	< 2	< 2
S molybdeen (Mo)	μg/l	< 2	3,7	4,9
S nikkel (Ni)	μg/l	9,7	23	9,3
S zink (Zn)	μg/l	25	33	< 10
Organische parameters - niet aron	natisch			
S minerale olie (florisil clean-up)	μg/l	< 50	< 50	< 50
Organische parameters - aromatis	ch			
Vluchtige aromaten:				
S benzeen	μg/l	< 0,2	< 0,2	< 0,2
S ethylbenzeen	μg/l	< 0,2	< 0,2	< 0,2
S naftaleen	μg/l	< 0,02	< 0,02	< 0,02
S o-xyleen	μg/l	< 0,1	< 0,1	< 0,1
S styreen	μg/l	< 0,2	< 0,2	< 0,2
S tolueen	μg/l	< 0,2	< 0,2	< 0,2
S xyleen (som m+p)	μg/l	< 0,2	< 0,2	< 0,2
S som xylenen	μg/l	0,2	0,2	0,2
Organische parameters - gehaloge	eneerd			
Vluchtige chlooralifaten:				
S 1,1,1-trichloorethaan	μg/l	< 0,1	< 0,1	< 0,1
S 1,1,2-trichloorethaan	μg/l	< 0,1	< 0,1	< 0,1
S 1,1-dichloorethaan	μg/l	< 0,2	< 0,2	< 0,2
S 1,1-dichlooretheen	μg/l	< 0,1	< 0,1	< 0,1
S 1,1-dichloorpropaan	μg/l	< 0,2	< 0,2	< 0,2
S 1,2-dichloorethaan	μg/l	< 0,2	< 0,2	< 0,2
S 1,2-dichloorpropaan	μg/l	< 0,2	< 0,2	< 0,2
S 1,3-dichloorpropaan	μg/l	< 0,2	< 0,2	< 0,2
S cis-1,2-dichlooretheen	μg/l	< 0,1	< 0,1	< 0,1
S dichloormethaan	μg/l	< 0,2	< 0,2	< 0,2
6 monochlooretheen (vinylchloride)	μg/l	< 0,2	< 0,2	< 0,2
S tetrachlooretheen	μg/l	< 0,1	< 0,1	< 0,1
S tetrachloormethaan	μg/l	< 0,1	< 0,1	< 0,1
S trans-1,2-dichlooretheen	μg/l	< 0,1	< 0,1	< 0,1
S trichlooretheen	μg/l	< 0,2	< 0,2	< 0,2
S trichloormethaan	μg/l	< 0,2	< 0,2	< 0,2
S som C+T dichlooretheen	μg/l	0,1	0,1	0,1
S som dichloorpropanen	μg/l	0,4	0,4	0,4
		♥,¬	٠, ٠	0,4
<i>Vluchtige gehalogeneerde alifaten - d</i> S tribroommethaan (bromoform)	<i>aivers:</i> μg/l	< 0,2	< 0,2	< 0,2
c and commentating (bromolomi)	μ9/1	~ U,Z	~ U,Z	~ 0,2

	Α	N	Α	L	Υ	S	E	С	Ε	R	Т	П	F	ı	С	Α	Α	T
--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

1746018

Projectcode Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

Uw Monsterreferenties 8272101 = 31A-1-1 31A (150-250)

Opgegeven bemonsteringsdatum	:	29/05/2024	
Ontvangstdatum opdracht	:	29/05/2024	
Startdatum	:	29/05/2024	
Monstercode	:	8272101	
Uw Matrix	:	Grondwater	
Anorganische parameters - metale Metalen ICP-MS (opgelost):	en		
S barium (Ba)	μg/l	150	
S cadmium (Cd)	μg/l	< 0,2	
S kobalt (Co)	μg/l	4,9	
S koper (Cu)	μg/l	< 2	
S Kwik (Hg) (niet vluchtig)	μg/l	< 0,05	
S lood (Pb)	μg/l	< 2	
S molybdeen (Mo)	μg/l	< 2	
S nikkel (Ni)	μg/l	5,0	
S zink (Zn)	μg/l	< 10	
Anorganische parameters - overig			
S cyanide (complex)	μg/l	< 3	
S totaal cyanide	μg/l	< 5	
S vrij cyanide	μg/l	< 3	
Organische parameters - niet aron	natisch		
S minerale olie (florisil clean-up)	μg/l	< 50	
Organische parameters - aromatis Vluchtige aromaten:	ch		
S benzeen	μg/l	< 0,2	
S ethylbenzeen	μg/l	< 0,2	
S naftaleen	μg/l	< 0,02	
S o-xyleen	μg/l	< 0,1	
S styreen	μg/l	< 0,2	
S tolueen	μg/l	< 0,2	
S xyleen (som m+p)	μg/l	< 0,2	
S som xylenen	μg/l	0,2	
Organische parameters - gehaloge	<i>10</i> ₹100₹10		
Vluchtige chlooralifaten:			
S 1,1,1-trichloorethaan	μg/l	< 0,1	
S 1,1,2-trichloorethaan	μg/l	< 0,1	
S 1,1-dichloorethaan	μg/l	< 0,2	
S 1,1-dichlooretheen	μg/l	< 0,1	
S 1,1-dichloorpropaan	μg/l	< 0,2	
S 1,2-dichloorethaan	μg/l	< 0,2	
S 1,2-dichloorpropaan	μg/l	< 0,2	
S 1,3-dichloorpropaan	μg/l	< 0,2	
S cis-1,2-dichlooretheen	μg/l	< 0,1	
S dichloormethaan	μg/l	< 0,2	
S monochlooretheen (vinylchloride)	μg/l	< 0,2	
S tetrachlooretheen	μg/l	< 0,1	
S tetrachloormethaan	μg/l	< 0,1	
S trans-1,2-dichlooretheen	μg/l	< 0,1	
S trichlooretheen	μg/l	< 0,2	
S trichloormethaan	μg/l	< 0,2	

Ref.: 1746018_certificaat_v1

Ref.: 1746018_certificaat_v1

ANALYSECERTIFICAAT

1746018

Projectcode Uw project omschrijving Opdrachtgever A5631-Euromarkt Alphen aan den Rijn

IDDS Milieu B.V.

Uw Monsterreferenties 8272101 = 31A-1-1 31A (150-250)

Opgegeven bemonsteringsdatum Ontvangstdatum opdracht Startdatum Monstercode Uw Matrix	: : : :	29/05/2024 29/05/2024 29/05/2024 8272101 Grondwater	
S som C+T dichlooretheen S som dichloorpropanen	μg/l μg/l	0,1 0,4	
Vluchtige gehalogeneerde alifaten - (S. tribroommethaan (bromoform)	divers: ua/l	< 0.2	

Projectcode : 1746018

Uw project omschrijving : A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever : IDDS Milieu B.V.

Opmerkingen m.b.t. analyses

Opmerking(en) algemeen

De volgende informatie is indien van toepassing verstrekt door de opdrachtgever: Project omschrijving, Monsterreferentie(s), Opgegeven bemonsteringsdatum, Matrix, Monsterdiepte, Potnr (Barcode), Veldgegevens, Veldwaarnemingen en Bemonsteringsdata. De opgegeven bemonsteringsdatum kan van invloed zijn op de geldigheid van de resultaten.

Sommatie van concentraties voor groepsparameters

De sommatie is uitgevoerd volgens AS3000 paragraaf 2.5.2 en bijlage 3.

Opdrachtverificatiecode: FGYG-VDXU-YOAK-VSPP

Ref.: 1746018_certificaat_v1

1746018

Projectcode Uw project omschrijving Opdrachtgever A5631-Euromarkt Alphen aan den Rijn

IDDS Milieu B.V.

Barcodeschema's

Monstercode	e Uw referentie	uw monsterref.	uw diepte	uw barcode
8272099	11-1-1 11 (150-250)	11 11	1.5-2.5 1.5-2.5	0480444YA 0430562MM
8272100	24-1-1 24 (200-300)	24 24	2-3 2-3	0480452YA 0430573MM
8272102	45-1-1 45 (150-250)	45 45	1.5-2.5 1.5-2.5	0480439YA 0430602MM
8272101	31A-1-1 31A (150-250)	31A 31A 31A	1.5-2.5 1.5-2.5 1.5-2.5	0480447YA 0430577MM 0051444KK

Opdrachtverificatiecode: FGYG-VDXU-YOAK-VSPP

Ref.: 1746018_certificaat_v1

Bijlage 2 van 2

ANALYSECERTIFICAAT

Projectcode : 1746018

Uw project omschrijving : A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever : IDDS Milieu B.V.

Analysemethoden Grondwater (AS3000)

AS3000

In dit analysecertificaat zijn de met 'S' gemerkte analyses uitgevoerd volgens de analysemethoden beschreven in het "Accreditatieschema Laboratoriumanalyses voor grond-, waterbodem- en grondwateronderzoek (AS SIKB 3000)". Het laboratoriumonderzoek is uitgevoerd volgens de onderstaande analysemethoden. Deze analyses zijn vastgelegd in het geldende accreditatie-certificaat met bijbehorende verrichtingenlijst L086 van Eurofins Omegam BV.

Barium (Ba) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Cadmium (Cd) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Kobalt (Co) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Koper (Cu) Kwik (Hg) (niet vluchtig) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Lood (Pb) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Molybdeen (Mo) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2 Nikkel (Ni) Zink (Zn) Conform AS3110 prestatieblad 3 en gelijkwaardig aan NEN-EN-ISO 17294-2

Cyanide complex Conform AS3140 prestatieblad 1 Conform AS3140 prestatieblad 1 Totaal cyanide Vrij cyanide Conform AS3140 prestatieblad 1 Minerale olie (florisil clean-up) Conform AS3110 prestatieblad 5 Aromaten (BTEXXN) Conform AS3130 prestatieblad 1 Styreen Conform AS3130 prestatieblad 1 Chlooralifaten Conform AS3130 prestatieblad 1 monochlooretheen (vinylchloride) Conform AS3130 prestatieblad 1 Conform AS3130 prestatieblad 1 1,1-Dichlooretheen Conform AS3130 prestatieblad 1 Tribroommethaan

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.

Opdrachtverificatiecode: FGYG-VDXU-YOAK-VSPP Ref.: 1746018_certificaat_v1

BIJLAGE 4.3

Certificaat asbest grond

IDDS Milieu B.V.

s-Gravendijckseweg 37 2201CZ NOORDWIJK ZH

Uw kenmerk : A5631-Euromarkt Alphen aan den Rijn

Ons kenmerk : Project 1753420
Validatieref. : 1753420_certificaat_v1
Opdrachtverificatiecode : QVXI-ZPCE-XJMY-VTAO
Bijlage(n) : 3 tabel(len) + 2 bijlage(n)

Amsterdam, 14 juni 2024

Hierbij zend ik u de resultaten van het laboratoriumonderzoek dat op uw verzoek is uitgevoerd in de door u aangeboden monsters.

De resultaten hebben uitsluitend betrekking op de monsters, zoals die door u voor analyse ter beschikking werden gesteld.

Het onderzoek is, met uitzondering van eventueel uitbesteed onderzoek, uitgevoerd door Eurofins Omegam. Informatie omtrent de gebruikte analysemethode(n) kunt u vinden in ons klantenportaal Mijn Lab onder "Info en Docs".

Ik wijs u erop dat het analysecertificaat alleen in zijn geheel mag worden gereproduceerd. Ik vertrouw erop uw opdracht volledig en naar tevredenheid te hebben uitgevoerd. Heeft u naar aanleiding van deze rapportage nog vragen, dan verzoek ik u contact op te nemen met onze klantenservice.

Hoogachtend, namens Eurofins Omegam,

Op dit certificaat zijn onze algemene voorwaarden van toepassing. Dit analysecertificaat mag niet anders dan in zijn geheel worden gereproduceerd.

Eurofins Omegam B.V. H.J.E. Wenckebachweg 120 NL-1114 AD Amsterdam-Duivendrecht Nederland T +31-(0)20-597 66 80

@eurofins.com
www.eurofins.nl

Projectcode 1753420

Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

Monstercode 8292183

Uw referentie ASB-GROND-M01 35-A (30-65)

23/05/2024 Opgegeven bemonsteringsdatum

Asbestonderzoek

Initialen analist

14-06-2024 Analysedatum

Analyse is uitgevoerd conform NEN 5898 (S).

Massa aangeleverde monster 13530 Droge massa aangeleverde monster : 12989 g Percentage droogrest 96,0 m/m %

Type zeving nat

zeeffractie (mm)	massa zeeffractie (gram)	percentage zeeffractie (m/m %)	massa onderzocht (gram)	percentage onderzocht (m/m %)	aantal asbest (deeltjes)	massa asbest-houdend materiaal (mg)
<0,5 mm	9920,6	78,2	10,0	0,10	n.v.t.	n.v.t.
0,5-1 mm	395,4	3,1	58,4	14,77	0	0,0
1-2 mm	543,9	4,3	182,9	33,63	0	0,0
2-4 mm	295,6	2,3	295,6	100,00	0	0,0
4-8 mm	452,2	3,6	452,2	100,00	0	0,0
8-20 mm	1073,9	8,5	1073,9	100,00	0	0,0
>20 mm	0,0	0,0	0,0	100,00	0	0,0
Totaal	12681,6	100,0	2073,0		0	0,0

		asbest totaal		Se	erpentijn asbe	st	amfibool asbest		
zeeffractie (mm)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)
<0,5 mm	-								
0,5-1 mm	0,0	0,0	0,3	0,0	0,0	0,2	0,0	0,0	0,2
1-2 mm	0,0	0,0	0,6	0,0	0,0	0,3	0,0	0,0	0,3
2-4 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
4-8 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
8-20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
>20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Totaal	<0,5	0,0	0,9	<0,5	0,0	0,5	0,0	0,0	0,5

Aangetroffen type asbest Geen Bijzonderheden waargenomen Geen

Serpentijn asbest is chrysotiel.

Amfibool asbest is amosiet, crocidoliet, actinoliet, anthophylliet en tremoliet.

De bepalingsgrens is bepaald voor de zeeffracties kleiner dan 4 mm. De totale bepalingsgrens is verkregen door de bepalingsgrenzen van de afzonderlijke zeeffracties te sommeren.

Het materiaal is middels polarisatiemicroscopie onderzocht, de analyse is uitgevoerd conform NEN 5896.

	Gebondenheid	Serpentijn asbest	Amfibool asbest	totaal afgerond
Г	hecht	0,0	0,0	0,0
	niet hecht	0,0	0,0	0,0
Г	totaal afgerond	0.0	0.0	

Gewogen concentratie (serpentijnasbestconcentratie vermeerderd met 10 maal de amfiboolasbestconcentratie) is: <0,5 mg/kg ds

De gewogen asbestconcentratie wordt berekend uit de niet-afgeronde gehalten aan serpentijn en amfibool asbest. De weergegeven resultaten zijn afgerond.

Verklaring kwalitatief onderzoek zeeffractie <0,5 mm:

-: geen asbest waargenomen

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.
- De met een 'S' gemerkte analyses zijn door RvA geaccrediteerd (L086) en op basis van het schema AS 3000 erkend.

Opdrachtverificatiecode: QVXI-ZPCE-XJMY-VTAO

Ref.: 1753420 certificaat v1

Projectcode 1753420

Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

Monstercode : 8292184

Uw referentie ASB-GROND-M02 48 (60-100)

23/05/2024 Opgegeven bemonsteringsdatum

Asbestonderzoek

Initialen analist 14-06-2024 Analysedatum

Analyse is uitgevoerd conform NEN 5898 (S).

Massa aangeleverde monster 2360 Droge massa aangeleverde monster : 2249 Percentage droogrest 95,3 m/m %

Type zeving nat

zeeffractie (mm)	massa zeeffractie (gram)	percentage zeeffractie (m/m %)	massa onderzocht (gram)	percentage onderzocht (m/m %)	aantal asbest (deeltjes)	massa asbest-houdend materiaal (mg)
<0,5 mm	1123,2	56,7	10,0	0,89	n.v.t.	n.v.t.
0,5-1 mm	98,5	5,0	25,3	25,69	0	0,0
1-2 mm	126,9	6,4	58,2	45,86	0	0,0
2-4 mm	256,2	12,9	256,2	100,00	0	0,0
4-8 mm	172,6	8,7	172,6	100,00	0	0,0
8-20 mm	204,8	10,3	204,8	100,00	0	0,0
>20 mm	0,0	0,0	0,0	100,00	0	0,0
Totaal	1982,2	100,0	727,1		0	0,0

		asbest totaal		Se	erpentijn asbe	st	amfibool asbest		
zeeffractie (mm)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)
<0,5 mm	-								
0,5-1 mm	0,0	0,0	1,1	0,0	0,0	0,5	0,0	0,0	0,5
1-2 mm	0,0	0,0	2,2	0,0	0,0	1,1	0,0	0,0	1,1
2-4 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
4-8 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
8-20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
>20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Totaal	<1,7	0,0	3,3	<1,7	0,0	1,7	0,0	0,0	1,7

Aangetroffen type asbest Geen Bijzonderheden waargenomen Geen

Serpentijn asbest is chrysotiel.

Amfibool asbest is amosiet, crocidoliet, actinoliet, anthophylliet en tremoliet.

De bepalingsgrens is bepaald voor de zeeffracties kleiner dan 4 mm. De totale bepalingsgrens is verkregen door de bepalingsgrenzen van de afzonderlijke zeeffracties te sommeren.

Het materiaal is middels polarisatiemicroscopie onderzocht, de analyse is uitgevoerd conform NEN 5896.

Gebondenheid	Serpentijn asbest	Amfibool asbest	totaal afgerond
hecht	0,0	0,0	0,0
niet hecht	0,0	0,0	0,0
totaal afgerond	0.0	0.0	

Gewogen concentratie (serpentijnasbestconcentratie vermeerderd met 10 maal de amfiboolasbestconcentratie) is: <1,7 mg/kg ds

De gewogen asbestconcentratie wordt berekend uit de niet-afgeronde gehalten aan serpentijn en amfibool asbest. De weergegeven resultaten zijn afgerond.

Verklaring kwalitatief onderzoek zeeffractie <0,5 mm:

-: geen asbest waargenomen

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.
- De met een 'S' gemerkte analyses zijn door RvA geaccrediteerd (L086) en op basis van het schema AS 3000 erkend.

Opdrachtverificatiecode: QVXI-ZPCE-XJMY-VTAO

Ref.: 1753420 certificaat v1

Projectcode 1753420

Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

Opmerkingen m.b.t. analyses

Opmerking(en) algemeen

De volgende informatie is indien van toepassing verstrekt door de opdrachtgever: Project omschrijving, Monsterreferentie(s), Opgegeven bemonsteringsdatum, Matrix, Monsterdiepte, Potnr (Barcode), Veldgegevens, Veldwaarnemingen en Bemonsteringsdata. De opgegeven bemonsteringsdatum kan van invloed zijn op de geldigheid van de resultaten.

Individuele monsters van dit project zijn als asbest verdacht gekwalificeerd. De analysedeelmonsters zijn met beschermende maatregelen in het laboratorium in behandeling genomen.

Opmerking bij project:

- Eurofins Omegam heeft het asbestonderzoek in dit/deze monster(s) uitgevoerd volgens de NEN 5898, en zoals beschreven in een aparte bijlage als onderdeel van dit analysecertificaat. Voor de analyseresultaten van het asbestonderzoek geldt dat Eurofins Omegam de analyse heeft uitgevoerd in de monsters die de opdrachtgever, zoals deze staan vermeld in de koptekst van dit analysecertificaat, zelf heeft genomen of laten nemen en aan Eurofins Omegam heeft aangeboden. Eurofins Omegam draagt geen verantwoordelijkheid inzake de herkomst en representativiteit alsmede de veiligheid tijdens de monsterneming.

ASB-GROND-M02 48 (60-100) Uw referentie

Monstercode 8292184

Opmerking bij het monster: De aangeboden monsterhoeveelheid voldoet niet aan de eis conform NEN 5898.

Opdrachtverificatiecode: QVXI-ZPCE-XJMY-VTAO

Ref.: 1753420 certificaat v1

1753420

Projectcode Uw project omschrijving Opdrachtgever A5631-Euromarkt Alphen aan den Rijn

IDDS Milieu B.V.

Barcodeschema's

Monstercode	e Uw referentie	uw monsterref.	uw diepte	uw barcode
8292183	ASB-GROND-M01 35-A (30-65)	35-A	0.3-0.65	1787216MG
8292184	ASB-GROND-M02 48 (60-100)	48	0.6-1	1787371MG

Opdrachtverificatiecode: QVXI-ZPCE-XJMY-VTAO

Ref.: 1753420_certificaat_v1

Bijlage 2 van 2

ANALYSECERTIFICAAT

Projectcode : 1753420

Uw project omschrijving : A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever : IDDS Milieu B.V.

Analysemethoden Grond (AS3000)

AS3000

In dit analysecertificaat zijn de met 'S' gemerkte analyses uitgevoerd volgens de analysemethoden beschreven in het "Accreditatieschema Laboratoriumanalyses voor grond-, waterbodem- en grondwateronderzoek (AS SIKB 3000)". Het laboratoriumonderzoek is uitgevoerd volgens de onderstaande analysemethoden. Deze analyses zijn vastgelegd in het geldende accreditatie-certificaat met bijbehorende verrichtingenlijst L086 van Eurofins Omegam BV.

Asbestonderzoek : Conform AS3070 prestatieblad 1 en NEN 5898

Opdrachtverificatiecode: QVXI-ZPCE-XJMY-VTAO

Ref.: 1753420_certificaat_v1

BIJLAGE 4.4

Certificaat fundatiemateriaal asbest

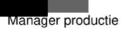
IDDS Milieu B.V.

s-Gravendijckseweg 37 2201CZ NOORDWIJK ZH

Uw kenmerk : A5631-Euromarkt Alphen aan den Rijn

Ons kenmerk : Project 1753421
Validatieref. : 1753421_certificaat_v1
Opdrachtverificatiecode : WINX-DJGI-WBSW-QCKW
Bijlage(n) : 3 tabel(len) + 2 bijlage(n)

Amsterdam, 17 juni 2024


Hierbij zend ik u de resultaten van het laboratoriumonderzoek dat op uw verzoek is uitgevoerd in de door u aangeboden monsters.

De resultaten hebben uitsluitend betrekking op de monsters, zoals die door u voor analyse ter beschikking werden gesteld.

Het onderzoek is, met uitzondering van eventueel uitbesteed onderzoek, uitgevoerd door Eurofins Omegam. Informatie omtrent de gebruikte analysemethode(n) kunt u vinden in ons klantenportaal Mijn Lab onder "Info en Docs".

Ik wijs u erop dat het analysecertificaat alleen in zijn geheel mag worden gereproduceerd. Ik vertrouw erop uw opdracht volledig en naar tevredenheid te hebben uitgevoerd. Heeft u naar aanleiding van deze rapportage nog vragen, dan verzoek ik u contact op te nemen met onze klantenservice.

Hoogachtend, namens Eurofins Omegam,

Op dit certificaat zijn onze algemene voorwaarden van toepassing. Dit analysecertificaat mag niet anders dan in zijn geheel worden gereproduceerd.

ANALYSECERTIFICAAT

Projectcode 1753421

Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

Monstercode : 8292185

Uw referentie ASB-PUIN-MM01 AMM01 (10-55) AMM01 (15-55)

23/05/2024 Opgegeven bemonsteringsdatum

Asbestonderzoek

Initialen analist Analysedatum 14-06-2024

Analyse is uitgevoerd conform NEN 5898 (Q).

28140 Massa aangeleverde monster Droge massa aangeleverde monster : 27802 g Percentage droogrest 98,8 m/m %

Type zeving : nat

zeeffractie (mm)	massa zeeffractie (gram)	percentage zeeffractie (m/m %)	massa onderzocht (gram)	percentage onderzocht (m/m %)	aantal asbest (deeltjes)	massa asbest-houdend materiaal (mg)
<0,5 mm	16774,3	61,1	10,0	0,06	n.v.t.	n.v.t.
0,5-1 mm	742,9	2,7	192,2	25,87	0	0,0
1-2 mm	937,5	3,4	385,5	41,12	0	0,0
2-4 mm	1416,2	5,2	966,9	68,27	0	0,0
4-8 mm	3009,7	11,0	3009,7	100,00	0	0,0
8-20 mm	4556,2	16,6	4556,2	100,00	0	0,0
>20 mm	0,0	0,0	0,0	100,00	0	0,0
Totaal	27436,8	100,0	9120,5		0	0,0

		asbest totaal	serpentijn asbest			amfibool asbest			
zeeffractie (mm)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)
<0,5 mm	-								
0,5-1 mm	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0
1-2 mm	0,0	0,0	0,2	0,0	0,0	0,1	0,0	0,0	0,1
2-4 mm	0,0	0,0	0,3	0,0	0,0	0,2	0,0	0,0	0,2
4-8 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
8-20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
>20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Totaal	<0,3	0,0	0,6	<0,3	0,0	0,3	0,0	0,0	0,3

Aangetroffen type asbest Geen Bijzonderheden waargenomen Geen

Serpentijn asbest is chrysotiel.

Amfibool asbest is amosiet, crocidoliet, actinoliet, anthophylliet en tremoliet.

De bepalingsgrens is bepaald voor de zeeffracties kleiner dan 4 mm. De totale bepalingsgrens is verkregen door de bepalingsgrenzen van de afzonderlijke zeeffracties te sommeren.

Het materiaal is middels polarisatiemicroscopie onderzocht, de analyse is uitgevoerd conform NEN 5896.

L	Gebondenheid	Serpentijn asbest	Amfibool asbest	totaal afgerond
Γ	hecht	0,0	0,0	0,0
	niet hecht	0,0	0,0	0,0
	totaal afgerond	0,0	0,0	

Gewogen concentratie (serpentijnasbestconcentratie vermeerderd met 10 maal de amfiboolasbestconcentratie) is: <0,3 mg/kg ds

De gewogen asbestconcentratie wordt berekend uit de niet-afgeronde gehalten aan serpentijn en amfibool asbest. De weergegeven resultaten zijn afgerond.

Verklaring kwalitatief onderzoek zeeffractie <0,5 mm:

-: geen asbest waargenomen

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.

- De met een 'Q' gemerkte analyses zijn door RvA geaccrediteerd (registratienummer L086).

Opdrachtverificatiecode: WINX-DJGI-WBSW-QCKW

Ref.: 1753421_certificaat_v1

ANALYSECERTIFICAAT

Projectcode 1753421

Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

Monstercode : 8292186

Uw referentie ASB-PUIN-M02 MM03* (15-50)

23/05/2024 Opgegeven bemonsteringsdatum

Asbestonderzoek

Initialen analist 14-06-2024 Analysedatum

Analyse is uitgevoerd conform NEN 5898 (Q).

: 14370 Massa aangeleverde monster Droge massa aangeleverde monster : 13968 g Percentage droogrest 97,2 m/m %

Type zeving : nat

zeeffractie (mm)	massa zeeffractie (gram)	percentage zeeffractie (m/m %)	massa onderzocht (gram)	percentage onderzocht (m/m %)	aantal asbest (deeltjes)	massa asbest-houdend materiaal (mg)
<0,5 mm	6083,1	44,6	10,0	0,16	n.v.t.	n.v.t.
0,5-1 mm	640,4	4,7	96,0	14,99	0	0,0
1-2 mm	1530,2	11,2	478,4	31,26	0	0,0
2-4 mm	1456,4	10,7	968,2	66,48	0	0,0
4-8 mm	1659,0	12,2	1659,0	100,00	0	0,0
8-20 mm	2277,8	16,7	2277,8	100,00	0	0,0
>20 mm	0,0	0,0	0,0	100,00	0	0,0
Totaal	13646,9	100,0	5489,4		0	0,0

		asbest totaal		Se	serpentijn asbest			amfibool asbest		
zeeffractie (mm)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	gehalte asbest (mg/kg ds)	ondergrens (mg/kg ds)	bovengrens (mg/kg ds)	
<0,5 mm	-									
0,5-1 mm	0,0	0,0	0,3	0,0	0,0	0,2	0,0	0,0	0,2	
1-2 mm	0,0	0,0	0,6	0,0	0,0	0,3	0,0	0,0	0,3	
2-4 mm	0,0	0,0	0,7	0,0	0,0	0,3	0,0	0,0	0,3	
4-8 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
8-20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
>20 mm	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Totaal	<0,9	0,0	1,6	<0,9	0,0	0,8	0,0	0,0	0,8	

Aangetroffen type asbest Geen Bijzonderheden waargenomen Geen

Serpentijn asbest is chrysotiel.

Amfibool asbest is amosiet, crocidoliet, actinoliet, anthophylliet en tremoliet.

De bepalingsgrens is bepaald voor de zeeffracties kleiner dan 4 mm. De totale bepalingsgrens is verkregen door de bepalingsgrenzen van de afzonderlijke zeeffracties te sommeren.

Het materiaal is middels polarisatiemicroscopie onderzocht, de analyse is uitgevoerd conform NEN 5896.

L	Gebondenheid	Serpentijn asbest	Amfibool asbest	totaal afgerond
Γ	hecht	0,0	0,0	0,0
	niet hecht	0,0	0,0	0,0
	totaal afgerond	0,0	0,0	

Gewogen concentratie (serpentijnasbestconcentratie vermeerderd met 10 maal de amfiboolasbestconcentratie) is: <0,9 mg/kg ds

De gewogen asbestconcentratie wordt berekend uit de niet-afgeronde gehalten aan serpentijn en amfibool asbest. De weergegeven resultaten zijn afgerond.

Verklaring kwalitatief onderzoek zeeffractie <0,5 mm:

-: geen asbest waargenomen

Dit analyse-certificaat, inclusief voorblad en eventuele bijlage(n), mag niet anders dan in zijn geheel worden gereproduceerd.

- De met een 'Q' gemerkte analyses zijn door RvA geaccrediteerd (registratienummer L086).

Opdrachtverificatiecode: WINX-DJGI-WBSW-QCKW Ref.: 1753421_certificaat_v1

Ref.: 1753421 certificaat v1

ANALYSECERTIFICAAT

Projectcode : 1753421

Uw project omschrijving : A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever : IDDS Milieu B.V.

Opmerkingen m.b.t. analyses

Opmerking(en) algemeen

De volgende informatie is indien van toepassing verstrekt door de opdrachtgever: Project omschrijving, Monsterreferentie(s), Opgegeven bemonsteringsdatum, Matrix, Monsterdiepte, Potnr (Barcode), Veldgegevens, Veldwaarnemingen en Bemonsteringsdata. De opgegeven bemonsteringsdatum kan van invloed zijn op de geldigheid van de resultaten.

Asbest

Individuele monsters van dit project zijn als asbest verdacht gekwalificeerd. De analysedeelmonsters zijn met beschermende maatregelen in het laboratorium in behandeling genomen.

Opmerking bij project:

- Eurofins Omegam heeft het asbestonderzoek in dit/deze monster(s) uitgevoerd volgens de NEN 5898, en zoals beschreven in een aparte bijlage als onderdeel van dit analysecertificaat. Voor de analyseresultaten van het asbestonderzoek geldt dat Eurofins Omegam de analyse heeft uitgevoerd in de monsters die de opdrachtgever, zoals deze staan vermeld in de koptekst van dit analysecertificaat, zelf heeft genomen of laten nemen en aan Eurofins Omegam heeft aangeboden. Eurofins Omegam draagt geen verantwoordelijkheid inzake de herkomst en representativiteit alsmede de veiligheid tijdens de monsterneming.

Uw referentie : ASB-PUIN-M02 MM03* (15-50)

Monstercode : 8292186

Opmerking bij het monster: - De aangeboden monsterhoeveelheid voldoet niet aan de eis conform NEN 5898.

ANALYSECERTIFICAAT

1753421

Projectcode Uw project omschrijving Opdrachtgever A5631-Euromarkt Alphen aan den Rijn

IDDS Milieu B.V.

Barcodeschema's

Monstercode	e Uw referentie	uw monsterref.	uw diepte	uw barcode
8292185	ASB-PUIN-MM01 AMM01 (10-55) AMM01 (15-55)	AMM01 AMM01	0.1-0.55 0.15-0.55	1787221MG 1787379MG
8292186	ASB-PUIN-M02 MM03* (15-50)	MM03*	0.15-0.5	1787219MG

ANALYSECERTIFICAAT

Projectcode : 1753421

Uw project omschrijving : A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever : IDDS Milieu B.V.

Analysemethoden Puin

In dit analysecertificaat zijn de met 'Q' gemerkte analyses uitgevoerd volgens de onderstaande analysemethoden. De matrix puin is representatief voor bouw- en sloopafval, puin en granulaat. Deze analyses zijn vastgelegd in het geldende accreditatie-certificaat met bijbehorende verrichtingenlijst L086 van Eurofins Omegam BV.

Asbestonderzoek : Conform NEN 5898

Opdrachtverificatiecode: WINX-DJGI-WBSW-QCKW

Ref.: 1753421_certificaat_v1

BIJLAGE 4.5
Certificaat fundatiemateriaal samenstellings- en uitlogingsonderzoek

IDDS Milieu B.V.

s-Gravendijckseweg 37 2201CZ NOORDWIJK ZH

Uw kenmerk : A5631-Euromarkt Alphen aan den Rijn

Ons kenmerk : Project 1756352
Validatieref. : 1756352_certificaat_v1
Opdrachtverificatiecode : DWPK-MGJR-ERHE-OWVM

Bijlage(n) : 4 tabel(len) + 1 oliechromatogram(men) + 1 bijlage(n)

Amsterdam, 24 juni 2024

Hierbij zend ik u de resultaten van het laboratoriumonderzoek dat op uw verzoek is uitgevoerd in de door u aangeboden monsters.

De resultaten hebben uitsluitend betrekking op de monsters, zoals die door u voor analyse ter beschikking werden gesteld.

Het onderzoek is, met uitzondering van eventueel uitbesteed onderzoek, uitgevoerd door Eurofins Omegam. Informatie omtrent de gebruikte analysemethode(n) kunt u vinden in ons klantenportaal Mijn Lab onder "Info en Docs".

Ik wijs u erop dat het analysecertificaat alleen in zijn geheel mag worden gereproduceerd. Ik vertrouw erop uw opdracht volledig en naar tevredenheid te hebben uitgevoerd. Heeft u naar aanleiding van deze rapportage nog vragen, dan verzoek ik u contact op te nemen met onze klantenservice.

Hoogachtend, namens Eurofins Omegam,

Manager productie

Op dit certificaat zijn onze algemene voorwaarden van toepassing. Dit analysecertificaat mag niet anders dan in zijn geheel worden gereproduceerd.

	ANAL	YSE	CERT	IFIC	AAT
--	------	-----	------	------	-----

Projectcode : 1756352

Uw project omschrijving Opdrachtgever A5631-Euromarkt Alphen aan den Rijn

IDDS Milieu B.V.

Uw Monsterreferenties

8300082 = FUND-M02 53 (15-50) 8300083 = FUND-MM01 45 (10-50) 46 (10-50) 47 (15-55)

Opgegeven bemonsteringsdatum	:	23/05/2024	22/05/2024	
Ontvangstdatum opdracht	:	17/06/2024	17/06/2024	
Startdatum	:	17/06/2024	17/06/2024	
Monstercode	:	8300082	8300083	
Uw Matrix	:	Puin	Puin	
Algemeen onderzoek - fysisch				
droge stof	%	92,2	92,2	
Anorganische parameters - metalo	en			
Metalen - uitloog onderzoek:				
antimoon (Sb)	mg/kg ds	< 0,009	< 0,009	
arseen (As)	mg/kg ds	< 0,2	< 0,2	
barium (Ba)	mg/kg ds	0,64	< 0,6	
cadmium (Ćd)	mg/kg ds	< 0,007	< 0,007	
chroom (Cr)	mg/kg ds	< 0,1	< 0,1	
kobalt (Co)	mg/kg ds	< 0,07	< 0,07	
koper (Cu)	mg/kg ds	< 0,1	< 0,1	
kwik (Hg) FIAS/Fims	mg/kg ds	< 0,005	< 0,005	
lood (Pb)	mg/kg ds	< 0,3	< 0,3	
molybdeen (Mo)	mg/kg ds	0,097	< 0,05	
nikkel (Ni)	mg/kg ds	< 0,2	< 0,03	
seleen (Se)	mg/kg ds	0,0091	< 0,20 < 0,009	
tin (Sn)	mg/kg ds	< 0,02	< 0,02	
vanadium (V)	mg/kg ds	< 0,3	< 0,3	
zink (Zn)	mg/kg ds	< 0,7	< 0,7	
Anorganische parameters - overig	l			
Uitloogonderzoek:		• •		
bromide	mg/kg ds	< 0,8	< 0,8	
chloride	mg/kg ds	180	< 100	
fluoride	mg/kg ds	37	3,8	
sulfaat	mg/kg ds	460	360	
Organische parameters - niet aror	natisch			
minerale olie (florisil clean-up)	mg/kg ds	< 35	260	
Organische parameters - aromatis	sch			
Polycyclische koolwaterstoffen:				
naftaleen	mg/kg ds	< 0,15	< 0,15	
fenantreen	mg/kg ds	< 0,15	1,5	
antraceen	mg/kg ds	< 0,15	0,19	
fluoranteen	mg/kg ds	< 0,15	1,1	
benzo(a)antraceen	mg/kg ds	< 0,15	0,48	
chryseen	mg/kg ds	< 0,15	0,52	
benzo(k)fluoranteen	mg/kg ds	< 0,15	0,24	
benzo(a)pyreen	mg/kg ds	< 0,15	0,32	
benzo(ghi)peryleen	mg/kg ds	< 0,15	0,21	
			0,21	
indeno(1 2 3-cd)nyreen				
indeno(1,2,3-cd)pyreen som PAK (10)	mg/kg ds mg/kg ds	< 0,15 1,0	4,9	

ANALYSECERTIFICAAT

Projectcode 1756352

Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

Uw Monsterreferenties

8300082 = FUND-M02 53 (15-50) 8300083 = FUND-MM01 45 (10-50) 46 (10-50) 47 (15-55)

Opgegeven bemonsteringsdatum: 23/05/2024 22/05/2024 Ontvangstdatum opdracht 17/06/2024 17/06/2024 Startdatum 17/06/2024 17/06/2024 Monstercode 8300082 8300083 **Uw Matrix** Puin Puin

Organische parameters - gehalogeneerd

-			
Pal	vchi	loorbifenv	len:

0., 000			
PCB -28	mg/kg ds	< 0,001	0,001
PCB -52	mg/kg ds	< 0,001	0,002
PCB -101	mg/kg ds	< 0,001	0,002
PCB -118	mg/kg ds	< 0,001	< 0,001
PCB -138	mg/kg ds	< 0,001	0,001
PCB -153	mg/kg ds	< 0,001	< 0,001
PCB -180	mg/kg ds	< 0,001	< 0,001
som PCBs (7)	mg/kg ds	0,005	0,008

ANALYSECERTIFICAAT

Projectcode 1756352

Uw project omschrijving A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever IDDS Milieu B.V.

Uw Monsterreferenties

8300082 = FUND-M02 53 (15-50)

8300083 = FUND-MM01 45 (10-50) 46 (10-50) 47 (15-55)

Opgegeven bemonsteringsdatum: 23/05/2024 22/05/2024 Ontvangstdatum opdracht 17/06/2024 17/06/2024 Startdatum 17/06/2024 17/06/2024 Monstercode 8300082 8300083 **Uw Matrix** Puin Puin

Uitloogonderzoek

Uitloogonderzoek algemeen:

I/s verhouding 10,0 10,0

Uitloogonderzoek cascadeproef:

cascade 1e trap BRBS uitgevoerd uitgevoerd

ANALYSECERTIFICAAT

Projectcode : 1756352

Uw project omschrijving : A5631-Euromarkt Alphen aan den Rijn

Opdrachtgever : IDDS Milieu B.V.

Opmerkingen m.b.t. analyses

Opmerking(en) algemeen

De volgende informatie is indien van toepassing verstrekt door de opdrachtgever:

Project omschrijving, Monsterreferentie(s), Opgegeven bemonsteringsdatum, Matrix, Monsterdiepte, Potnr (Barcode), Veldgegevens, Veldwaarnemingen en Bemonsteringsdata. De opgegeven bemonsteringsdatum kan van invloed zijn op de geldigheid van de resultaten.

Sommatie van concentraties voor groepsparameters

De sommatie is uitgevoerd volgens AS3000 paragraaf 2.5.2 en bijlage 3.

Uw referentie : FUND-MM01 45 (10-50) 46 (10-50) 47 (15-55)

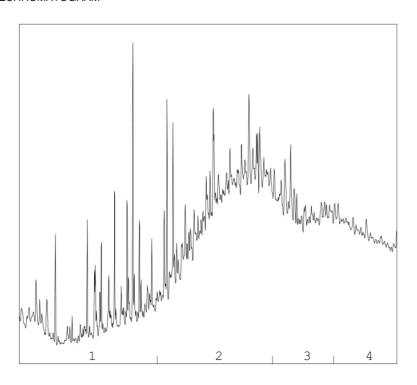
Monstercode : 8300083

Opmerking(en) bij resultaten:

PCB -138: - Bij deze gaschromatografische analyse valt PCB 138 samen met PCB 163.

OLIE-ONDERZOEK

Monstercode : 8300083


Uw project : A5631-Euromarkt Alphen aan den Rijn omschrijving

omschrijving Uw referentie : FUNI

: FUND-MM01 45 (10-50) 46 (10-50) 47 (15-55)

Methode : minerale olie (florisil clean-up)

OLIECHROMATOGRAM

oliefractieverdeling

OLIEFRACTIEVERDELING

1)	fractie > C10 - C19	12 %
2)	fractie C19 - C29	44 %
3)	fractie C29 - C35	23 %
4)	fractie C35 -< C40	20 %

minerale olie gehalte: 260 mg/kg ds

Minerale olie

Interpretatie: raadpleeg voor de typering van de oliesoort de OMEGAM oliebibliotheek.

De hoogte van de signalen is geen maat voor de concentratie van de olie in het monster. (Het chromatogram heeft een variabele schaalindeling)

Bij een minerale olie gehalte kleiner dan de rapportagegrens worden geen oliefracties weergegeven.

ANALYSECERTIFICAAT

Projectcode 1756352

Uw project omschrijving Opdrachtgever A5631-Euromarkt Alphen aan den Rijn IDDS Milieu B.V.

Barcodeschema's

Monstercode	e Uw referentie	uw monsterref.	uw diepte	uw barcode
8300082	FUND-M02 53 (15-50)	53	0.15-0.5	4631796AA
8300083	FUND-MM01 45 (10-50) 46 (10-50) 47 (15-55)	45 46 47	0.1-0.5 0.1-0.5 0.15-0.55	4631451AA 4631901AA 4631632AA

BIJLAGE 5.1
Toetsingstabellen grond

Tabel 1: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM01			
Certificaatcode	1743025			
Datum	21-5-2024			
Traject (cm-mv)	0-100			
Humus (% ds)	0,5			
Lutum (% ds)	9,7			
Datum van toetsing	3-6-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	89,8	89,8	%	GTA (5)
Lutum	9,7		%	
Organische stof (humus)	0,5		%	
Aard artefacten	-,-		-	
Gewicht artefacten			g	
			-	
METALEN				
Barium	26	51	mg/kg ds	GTA (5)
Cadmium	< 0,20	<0,22	mg/kg ds	<=IW
Kobalt	< 3,0	<4,0	mg/kg ds	<=IW
Koper	5,4	8,8	mg/kg ds	<= W
Kwik	< 0,05	<0,04	mg/kg ds	<=IW
Lood	< 10	<10	mg/kg ds	<=IW
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IW
Nikkel	7	12	mg/kg ds	<=IW
Zink	24	41	mg/kg ds	<= W
PAK				
Naftaleen	< 0.05	<0.04	mg/kg ds	
Fenanthreen	< 0,05	<0,04	mg/kg ds	
Anthraceen	< 0,05	<0,04	mg/kg ds	
Fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)anthraceen	< 0,05	<0,04	mg/kg ds	
Chryseen	< 0.05	<0,04	mg/kg ds	
Benzo(k)fluorantheen	< 0,05	<0.04	mg/kg ds	
Benzo(a)pyreen	< 0,05	<0,04	mg/kg ds	
Benzo(g,h,i)peryleen	< 0,05	<0,04	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	< 0,05	<0,04	mg/kg ds	
PAK 10 VROM	0,35	<0,04	mg/kg ds	<= W
	0,00	~0,00	mg/kg us	2-144
PCB'S				
PCB 28	< 0,001	<0,004	mg/kg ds	
PCB 52	< 0,001	<0,004	mg/kg ds	
PCB 101	< 0,001	<0,004	mg/kg ds	
PCB 118	< 0,001	<0,004	mg/kg ds	
PCB 138	< 0,001	<0,004	mg/kg ds	
PCB 153	< 0,001	<0,004	mg/kg ds	
PCB 180	< 0,001	<0,004	mg/kg ds	
PCB (som 7)		<0,025	mg/kg ds	<=IW
MINERALE OLIE				
Minerale olie C10 - C40	< 35	<123	mg/kg ds	<= W
17111101010 0110 0 10 - OTO	- 00	- 120	mg/kg us	The second secon

Tabel 2: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM02			
Certificaatcode	1743025			
Datum	22-5-2024			
Traject (cm-mv)	0-90			
Humus (% ds)	1,6			
Lutum (% ds)	17,6			
Datum van toetsing	3-6-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	87,1	87,1	%	GTA (5)
Lutum	17,6		%	
Organische stof (humus)	1,6		%	
Aard artefacten	.,		-	
Gewicht artefacten			g	
METALEN				
METALEN Borium	44	54	maller de	CTA (5)
Barium	41	54	mg/kg ds	GTA ⁽⁵⁾
Cadmium	< 0,20	<0,19	mg/kg ds	<= W
Kobalt	3,5	4,5	mg/kg ds	<= W
Koper	6,2	8,3	mg/kg ds	<= W
Kwik	< 0,05	<0,04	mg/kg ds	<= W
Lood	11 < 1,5	13	mg/kg ds	<= W
Molybdeen		<1,1	mg/kg ds	<= W
Nikkel	11 31	14 41	mg/kg ds	<= W <= W
Zink	31	41	mg/kg ds	X-1VV
PAK				
Naftaleen	< 0,05	<0,04	mg/kg ds	
Fenanthreen	0,08	0,08	mg/kg ds	
Anthraceen	< 0,05	<0,04	mg/kg ds	
Fluorantheen	0,19	0,19	mg/kg ds	
Benzo(a)anthraceen	0,07	0,07	mg/kg ds	
Chryseen	0,10	0,10	mg/kg ds	
Benzo(k)fluorantheen	0,06	0,06	mg/kg ds	
Benzo(a)pyreen	0,10	0,10	mg/kg ds	
Benzo(g,h,i)peryleen	0,13	0,13	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	0,12	0,12	mg/kg ds	
PAK 10 VROM	0,92	0,92	mg/kg ds	<= W
PCB'S				
PCB 28	< 0,001	<0,004	mg/kg ds	
PCB 52	< 0,001	<0,004	mg/kg ds	
PCB 101	< 0,001	<0,004	mg/kg ds	
PCB 118	< 0,001	<0,004	mg/kg ds	
PCB 138	0,003	0,015	mg/kg ds	
PCB 153	0,002	0,010	mg/kg ds	
PCB 180	0,002	0,010	mg/kg ds	
PCB (som 7)	·	0,049	mg/kg ds	<= W
MINERALE OLIE				
Minerale olie C10 - C40	82	410	mg/kg ds	<= W
			,g,g uo	

Tabel 3: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM03			
Certificaatcode	1743025			
Datum	21-5-2024			
Traject (cm-mv)	5-80			
Humus (% ds)	0,6			
Lutum (% ds)	1			
Datum van toetsing	3-6-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	89,3	89,3	%	GTA (5)
Lutum	< 1		%	
Organische stof (humus)	0,6		%	
Aard artefacten	5,5		-	
Gewicht artefacten			g	
			3	
METALEN				
Barium	< 20	<54	mg/kg ds	GTA (5)
Cadmium	< 0,20	<0,24	mg/kg ds	<=IW
Kobalt	< 3,0	<7,4	mg/kg ds	<=IW
Koper	< 5,0	<7,2	mg/kg ds	<=IW
Kwik	< 0,05	<0,05	mg/kg ds	<=IW
Lood	< 10	<11	mg/kg ds	<=IW
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IW
Nikkel	5	15	mg/kg ds	<= W
Zink	< 20	<33	mg/kg ds	<=IW
PAK				
Naftaleen	< 0,05	<0.04	mg/kg ds	
Fenanthreen	< 0,05	<0,04	mg/kg ds	
Anthraceen	< 0,05	<0,04	mg/kg ds	
Fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)anthraceen	< 0,05	<0,04	mg/kg ds	
Chryseen	< 0.05	<0,04	mg/kg ds	
Benzo(k)fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)pyreen	< 0,05	<0,04	mg/kg ds	
Benzo(g,h,i)peryleen	< 0,05	<0,04	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	< 0,05	<0,04	mg/kg ds	
PAK 10 VROM	0,35	<0.35	mg/kg ds	<= W
	0,00	-0,00	mg/kg do	- 144
PCB`S				
PCB 28	< 0,001	<0,004	mg/kg ds	
PCB 52	< 0,001	<0,004	mg/kg ds	
PCB 101	< 0,001	<0,004	mg/kg ds	
PCB 118	< 0,001	<0,004	mg/kg ds	
PCB 138	< 0,001	<0,004	mg/kg ds	
PCB 153	< 0,001	<0,004	mg/kg ds	
PCB 180	< 0,001	<0,004	mg/kg ds	
PCB (som 7)		<0,025	mg/kg ds	<=IW
MINERALE OLIE				
Minerale olie C10 - C40	< 35	<123	mg/kg ds	<=IW

Tabel 4: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM04			
Certificaatcode	1743025			
Datum	21-5-2024			
Traject (cm-mv)	6-100			
Humus (% ds)	2,1			
Lutum (% ds)	5,9			
Datum van toetsing	3-6-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	84,4	84,4	%	GTA (5)
Lutum	5,9		%	
Organische stof (humus)	2,1		%	
Aard artefacten	-1.		-	
Gewicht artefacten			g	
			Ŭ.	
METALEN				
Barium	< 20	<36	mg/kg ds	GTA (5)
Cadmium	< 0,20	<0,23	mg/kg ds	<= W
Kobalt	< 3,0	<5,2	mg/kg ds	<=IW
Koper	< 5,0	<6,4	mg/kg ds	<=IW
Kwik	< 0,05	<0,05	mg/kg ds	<=IVV
Lood	< 10	<10	mg/kg ds	<=IVV
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IW
Nikkel	8	18	mg/kg ds	<=IW
Zink	23	45	mg/kg ds	<=IW
PAK				
Naftaleen	< 0.05	<0.04	mg/kg ds	
Fenanthreen	< 0,05	<0,04	mg/kg ds	
Anthraceen	< 0,05	<0,04	mg/kg ds	
Fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)anthraceen	< 0,05	<0,04	mg/kg ds	
Chryseen	< 0.05	<0,04	mg/kg ds	
Benzo(k)fluorantheen	< 0,05	<0.04	mg/kg ds	
Benzo(a)pyreen	< 0,05	<0,04	mg/kg ds	
Benzo(g,h,i)peryleen	< 0,05	<0,04	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	< 0,05	<0,04	mg/kg ds	
PAK 10 VROM	0,35	<0,35	mg/kg ds	<= W
	5,00	3,30		
PCB`S				
PCB 28	< 0,001	<0,003	mg/kg ds	
PCB 52	< 0,001	<0,003	mg/kg ds	
PCB 101	< 0,001	<0,003	mg/kg ds	
PCB 118	< 0,001	<0,003	mg/kg ds	
PCB 138	< 0,001	<0,003	mg/kg ds	
PCB 153	< 0,001	<0,003	mg/kg ds	
PCB 180	< 0,001	<0,003	mg/kg ds	
PCB (som 7)		<0,023	mg/kg ds	<= W
MINERALE OLIE		+		
Minerale olie C10 - C40	< 35	<117	mg/kg ds	<= W
17111101 0110 0 10 - 070	- 00		mg/kg us	

Tabel 5: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

	MOF			
monsternummer Contification de	M05			
Certificaatcode	1743025			
Datum	23-5-2024			
Traject (cm-mv)	30-65			
Humus (% ds)	0,4			
Lutum (% ds)	4,3			
Datum van toetsing	3-6-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIC				
OVERIG Dragg stof	04 5	01 5	%	GTA ⁽⁵⁾
Droge stof	91,5	91,5		GIA
Lutum Organiache etef (humus)	4,3		%	
Organische stof (humus)	0,4		%	
Aard artefacten			-	
Gewicht artefacten			g	
METALEN				
Barium	99	298	mg/kg ds	GTA (5)
Cadmium	< 0,20	<0,23	mg/kg ds	<=IW
Kobalt	< 3,0	<5,9	mg/kg ds	<=IW
Koper	6,7	12,8	mg/kg ds	<=IW
Kwik	< 0,05	<0,05	mg/kg ds	<=IW
Lood	12	18	mg/kg ds	<= W
Molybdeen	< 1,5	<1,1	mg/kg ds	<= W
Nikkel	9	22	mg/kg ds	<= W
Zink	37	79	mg/kg ds	<= W
PAK				
Naftaleen	< 0.05	<0.04	mg/kg ds	
Fenanthreen	< 0,05	<0,04	mg/kg ds	
Anthraceen	< 0,05	<0,04	mg/kg ds	
Fluorantheen	0,07	0,07	mg/kg ds	
Benzo(a)anthraceen	< 0.05	<0,04	mg/kg ds	
Chryseen	0,06	0,06	mg/kg ds	
Benzo(k)fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)pyreen	0.05	0,05	mg/kg ds	
Benzo(g,h,i)peryleen	0,05	0,05	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	< 0.05	<0.04	mg/kg ds	
PAK 10 VROM	0,44	0,44	mg/kg ds	<= W
17.00 TO VICOINI	0,77	0,77	mg/kg us	- 111
PCB'S				
PCB 28	< 0,001	<0,004	mg/kg ds	
PCB 52	< 0,001	<0,004	mg/kg ds	
PCB 101	< 0,001	<0,004	mg/kg ds	
PCB 118	< 0,001	<0,004	mg/kg ds	
PCB 138	< 0,001	<0,004	mg/kg ds	
PCB 153	< 0,001	<0,004	mg/kg ds	
PCB 180	< 0,001	<0,004	mg/kg ds	
PCB (som 7)		<0,025	mg/kg ds	<=IW
MINERALE OLIE				
Minerale olie C10 - C40	< 35	<123	mg/kg ds	<=IW
	- 00	120	inging as	

Tabel 6: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	M06			
Certificaatcode	1743025			
Datum	22-5-2024			
Traject (cm-mv)	60-100			
Humus (% ds)	1,1			
Lutum (% ds)	4,8			
Datum van toetsing	3-6-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				interventiewaarde
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	88,1	88,1	%	GTA (5)
Lutum	4,8		%	
Organische stof (humus)	1,1		%	
Aard artefacten			-	
Gewicht artefacten			g	
METALEN				
Barium	60	172	mg/kg ds	GTA ⁽⁵⁾
Cadmium	< 0,20	<0,23	mg/kg ds	<= W
Kobalt	3,1	8,3	mg/kg ds	<=IW
Koper	13	25	mg/kg ds	<= W
Kwik	0,13	0,18	mg/kg ds	<=IW
Lood	22	33	mg/kg ds	<= W
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IW
Nikkel	9	21	mg/kg ds	<=IW
Zink	76	158	mg/kg ds	<=IW
PAK				
Naftaleen	< 0,05	<0,04	mg/kg ds	
Fenanthreen	4,6	4,6	mg/kg ds	
Anthraceen	1,3	1,3	mg/kg ds	
Fluorantheen	3,9	3,9	mg/kg ds	
Benzo(a)anthraceen	1,4	1,4	mg/kg ds	
Chryseen	1,6	1,6	mg/kg ds	
Benzo(k)fluorantheen	0,70	0,70	mg/kg ds	
Benzo(a)pyreen	0,93	0,93	mg/kg ds	
Benzo(g,h,i)peryleen	0,61	0,61	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	0,57	0,57	mg/kg ds	
PAK 10 VROM	16	16	mg/kg ds	<= W
PCB'S				
PCB 28	< 0,001	<0,004	mg/kg ds	
PCB 52	0,003	0,015	mg/kg ds	
PCB 101	0,017	0,085	mg/kg ds	
PCB 118	0,007	0,035	mg/kg ds	
PCB 138	0,069	0,345	mg/kg ds	
PCB 153	0,053	0,265	mg/kg ds	
PCB 180	0,032	0,160	mg/kg ds	
PCB (som 7)	0,002	0,91	mg/kg ds	<=IW
MINERALE OLIE				
Minerale olie C10 - C40	100	500	mg/kg ds	<= W
IVIII IOI AID OILE O IU - 040	100	300	ilig/kg us	~-IVV

Tabel 7: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM07			
Certificaatcode	1743025			
Datum	21-5-2024			
Traject (cm-mv)	70-200			
Humus (% ds)	7,9			
Lutum (% ds)	11			
Datum van toetsing	3-6-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	67,7	67,7	%	GTA ⁽⁵⁾
Lutum	11,0	.,.	%	
Organische stof (humus)	7,9		%	
Aard artefacten	.,.		-	
Gewicht artefacten			g	
			3	
METALEN				
Barium	220	401	mg/kg ds	GTA (5)
Cadmium	0,38	0,46	mg/kg ds	<= VV
Kobalt	11	19	mg/kg ds	<=IVV
Koper	34	46	mg/kg ds	<=IVV
Kwik	0,45	0,54	mg/kg ds	<=IVV
Lood	130	160	mg/kg ds	<= \V\
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IVV
Nikkel	38	63	mg/kg ds	<=IW
Zink	120	177	mg/kg ds	<= W
PAK				
Naftaleen	< 0,05	<0.04	mg/kg ds	
Fenanthreen	< 0,05	<0,04	mg/kg ds	
Anthraceen	< 0,05	<0,04	mg/kg ds	
Fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)anthraceen	< 0,05	<0,04	mg/kg ds	
Chryseen	< 0.05	<0,04	mg/kg ds	
Benzo(k)fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)pyreen	< 0,05	<0,04	mg/kg ds	
Benzo(g,h,i)peryleen	< 0,05	<0,04	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	< 0,05	<0,04	mg/kg ds	
PAK 10 VROM	0,35	<0,35	mg/kg ds	<= W
	2,00	5,50		
PCB`S				
PCB 28	< 0,001	<0,001	mg/kg ds	
PCB 52	< 0,001	<0,001	mg/kg ds	
PCB 101	< 0,001	<0,001	mg/kg ds	
PCB 118	< 0,001	<0,001	mg/kg ds	
PCB 138	< 0,001	<0,001	mg/kg ds	
PCB 153	< 0,001	<0,001	mg/kg ds	
PCB 180	< 0,001	<0,001	mg/kg ds	
PCB (som 7)		<0,0062	mg/kg ds	<= W
MINERALE OLIE				
Minerale olie C10 - C40	< 35	<31	mg/kg ds	<= W
	- 00	1 .0 .	inging as	

Tabel 8: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM08			
Certificaatcode	1743025			
Datum	21-5-2024			
Traject (cm-mv)	80-150			
Humus (% ds)	5,1			
Lutum (% ds)	21,1			
Datum van toetsing	3-6-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	71,0	71,0	%	GTA (5)
Lutum	21,1		%	
Organische stof (humus)	5,1		%	
Aard artefacten			-	
Gewicht artefacten			g	
METALEN				
Barium	240	275	mg/kg ds	GTA (5)
Cadmium	0,37	0,44	mg/kg ds	<=IW
Kobalt	13	15	mg/kg ds	<= W
Koper	37	43	mg/kg ds	<= W
Kwik	0,38	0,41	mg/kg ds	<= W
Lood	82	91	mg/kg ds	<= W
Molybdeen	1,5	1,5	mg/kg ds	<=IW
Nikkel	42	47	mg/kg ds	<= W
Zink	120	139	mg/kg ds	<=IW
PAK				
Naftaleen	< 0.05	<0.04	mg/kg ds	
Fenanthreen	0,06	0,04	mg/kg ds	
	< 0,05	<0,06	mg/kg ds	
Anthraceen Fluorantheen	0,10	0,10	mg/kg ds	
Benzo(a)anthraceen				
Chryseen	0,05 0,09	0,05 0,09	mg/kg ds mg/kg ds	
Benzo(k)fluorantheen	< 0,09	<0.04	mg/kg ds mg/kg ds	
Benzo(a)pyreen	0,05	0,05	mg/kg ds	
Benzo(g,h,i)peryleen	< 0,05	<0,05	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	< 0,05	<0,04	mg/kg ds	
PAK 10 VROM	0,52	0,53	mg/kg ds	<= W
	0,02	0,00	mg/kg us	X-144
PCB'S				
PCB 28	< 0,001	<0,001	mg/kg ds	
PCB 52	< 0,001	<0,001	mg/kg ds	
PCB 101	0,004	0,008	mg/kg ds	
PCB 118	< 0,001	<0,001	mg/kg ds	
PCB 138	0,018	0,035	mg/kg ds	
PCB 153	0,013	0,025	mg/kg ds	
PCB 180	0,009	0,018	mg/kg ds	
PCB (som 7)		0,090	mg/kg ds	<= W
MINERALE OLIE				
Minerale olie C10 - C40	< 35	<48	mg/kg ds	<= W

Tabel 9: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM09			
Certificaatcode	1743025			
Datum	21-5-2024			
Traject (cm-mv)	70-180			
Humus (% ds)	8,3			
Lutum (% ds)	28,2			
Datum van toetsing	3-6-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	64,8	64,8	%	GTA (5)
Lutum	28,2		%	
Organische stof (humus)	8,3		%	
Aard artefacten	-,-		-	
Gewicht artefacten			g	
METALEN				
1001 - 1001 W - 11 - 100	220	200	malka da	GTA ⁽⁵⁾
Barium Cadmium	230 0,31	208 0,32	mg/kg ds	<=IW
		11	mg/kg ds	<=IVV <=IW
Kobalt	12 26	25	mg/kg ds mg/kg ds	<=IVV <=IW
Koper				
Kwik Lood	0,18 45	0,18 44	mg/kg ds	<= W <= W
	< 1,5		mg/kg ds	<=IVV <=IW
Molybdeen		<1,1	mg/kg ds	
Nikkel	90	40	mg/kg ds	<= W
Zink	90	86	mg/kg ds	<=IW
PAK				
Naftaleen	< 0,05	<0,04	mg/kg ds	
Fenanthreen	< 0,05	<0,04	mg/kg ds	
Anthraceen	< 0,05	<0,04	mg/kg ds	
Fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)anthraceen	< 0,05	<0,04	mg/kg ds	
Chryseen	< 0,05	<0,04	mg/kg ds	
Benzo(k)fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)pyreen	< 0,05	<0,04	mg/kg ds	
Benzo(g,h,i)peryleen	< 0,05	<0,04	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	< 0,05	<0,04	mg/kg ds	
PAK 10 VROM	0,35	<0,35	mg/kg ds	<=IW
PCB'S				
PCB 28	< 0,001	<0,001	mg/kg ds	
PCB 52	< 0,001	<0,001	mg/kg ds	
PCB 101	< 0,001	<0,001	mg/kg ds	
PCB 118	< 0,001	<0,001	mg/kg ds	
PCB 138	< 0,001	<0,001	mg/kg ds	
PCB 153	< 0,001	<0,001	mg/kg ds	
PCB 180	< 0,001	<0,001	mg/kg ds	
PCB (som 7)		<0,0059	mg/kg ds	<=IW
MINERALE OLIE				
Minerale olie C10 - C40	< 35	<30	mg/kg ds	<=IW

Tabel 10: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM10			
Certificaatcode	1743025			
Datum	21-5-2024			
Traject (cm-mv)	70-150			
Humus (% ds)	3,2			
Lutum (% ds)	26,1			
Datum van toetsing	3-6-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	76,6	76,6	%	GTA ⁽⁵⁾
Lutum	26,1	. 5,5	%	<u> </u>
Organische stof (humus)	3,2		%	
Aard artefacten	0,2		-	
Gewicht artefacten			g	
Comon direction			9	
METALEN				
Barium	170	164	mg/kg ds	GTA (5)
Cadmium	0,24	0,29	mg/kg ds	<=IW
Kobalt	15	15	mg/kg ds	<=IW
Koper	19	21	mg/kg ds	<=IW
Kwik	0,07	0,07	mg/kg ds	<=IW
Lood	25	27	mg/kg ds	<=IW
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IW
Nikkel	43	42	mg/kg ds	<=IVV
Zink	79	83	mg/kg ds	<=IW
PAK				
Naftaleen	< 0.05	<0.04	mg/kg ds	
Fenanthreen	< 0.05	<0.04	mg/kg ds	
Anthraceen	< 0,05	<0,04	mg/kg ds	
Fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)anthraceen	< 0.05	<0.04	mg/kg ds	
Chryseen	< 0,05	<0,04	mg/kg ds	
Benzo(k)fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)pyreen	< 0.05	<0,04	mg/kg ds	
Benzo(g,h,i)peryleen	< 0.05	<0,04	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	< 0,05	<0,04	mg/kg ds	
PAK 10 VROM	0,35	<0,35	mg/kg ds	<=IVV
			U U S	
PCB'S				
PCB 28	< 0,001	<0,002	mg/kg ds	
PCB 52	< 0,001	<0,002	mg/kg ds	
PCB 101	< 0,001	<0,002	mg/kg ds	
PCB 118	< 0,001	<0,002	mg/kg ds	
PCB 138	< 0,001	<0,002	mg/kg ds	
PCB 153	< 0,001	<0,002	mg/kg ds	
PCB 180	< 0,001	<0,002	mg/kg ds	
PCB (som 7)		<0,015	mg/kg ds	<= W
MINERALE OLIE				
MINERALE OLIE Minerale olie C10 - C40	< 35	<77	mg/kg ds	<= W
Millorato one one one	- 00	-11	mg/kg da	3 177

Tabel 11: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM11			
Certificaatcode	1743025			
Datum	22-5-2024			
Traject (cm-mv)	100-200			
Humus (% ds)	5,1			
Lutum (% ds)	23			
Datum van toetsing	3-6-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
<u> </u>	Meetw	GSSD		T130
OVERIG				
Droge stof	70,6	70,6	%	GTA (5)
Lutum	23,0		%	
Organische stof (humus)	5,1		%	
Aard artefacten	-1.		-	
Gewicht artefacten			g	
			3	
METALEN				
Barium	190	203	mg/kg ds	GTA ⁽⁵⁾
Cadmium	0,29	0,34	mg/kg ds	<=IW
Kobalt	13	14	mg/kg ds	<=IVV
Koper	22	25	mg/kg ds	<=IW
Kopei Kwik	0,15	0,16	mg/kg ds	<=IVV
Lood	37	40	mg/kg ds	<=IW
	< 1,5	<1,1		<=IW
Molybdeen			mg/kg ds	and the second s
Nikkel	38	40	mg/kg ds	<= W
Zink	82	91	mg/kg ds	<= W
PAK				
Naftaleen	< 0,05	<0.04	mg/kg ds	
Fenanthreen	< 0,05	<0.04	mg/kg ds	
Anthraceen	< 0,05	<0,04		
			mg/kg ds	
Fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)anthraceen	< 0,05	<0,04	mg/kg ds	
Chryseen	< 0,05	<0,04	mg/kg ds	
Benzo(k)fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)pyreen	< 0,05	<0,04	mg/kg ds	
Benzo(g,h,i)peryleen	< 0,05	<0,04	mg/kg ds	
ndeno-(1,2,3-c,d)pyreen	< 0,05	<0,04	mg/kg ds	
PAK 10 VROM	0,35	<0,35	mg/kg ds	<= W
PCB'S		1		
PCB 28	< 0,001	<0,001	mg/kg ds	
PCB 52	< 0,001	<0,001	mg/kg ds	
PCB 101	< 0,001	<0,001	mg/kg ds	
PCB 101	< 0,001	<0,001	mg/kg ds	
PCB 118	0,008			
		0,016	mg/kg ds	
PCB 153	0,008	0,016	mg/kg ds	
PCB 180	0,007	0,014	mg/kg ds	Z-IVA/
PCB (som 7)		0,051	mg/kg ds	<=IW
MINERALE OLIE		+		
Minerale olie C10 - C40	< 35	<48	mg/kg ds	<=IW
	1 00	1.0	inging as	

Tabel 12: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	M12			
Certificaatcode	1743025			
Datum	23-5-2024			
Traject (cm-mv)	170-200			
Humus (% ds)	10,9			
Lutum (% ds)	26,5			
Datum van toetsing	3-6-2024			
Bodemklasse monster	0 0 2024			Voldoet aan
Doderniklasse monster				Interventiewaarde
Monstermelding 1				interventiewaarde
Monstermelding 2				
Monstermelding 3				
Monstermelaing 5	Meetw	GSSD		T130
	ivieetw	GSSD		1130
OVERIG				
	EG 2	EG 2	0/	CTA (5)
Droge stof	56,3	56,3	%	GTA (5)
Lutum	26,5		%	
Organische stof (humus)	10,9		%	
Aard artefacten			-	
Gewicht artefacten			g	
ANORGANISCHE VERBINDINGEN				
Cyanide (totaal)	< 3	<2	mg/kg ds	GTA (5)
Cyanide (vrij)	< 2	<1	mg/kg ds	<=IVV
Cyanide (complex pH>=5)	< 1	1	mg/kg ds	<=IW
METALEN				
Barium	250	238	mg/kg ds	GTA (5)
Cadmium	0,39	0,38	mg/kg ds	<= W
Kobalt	10	10	mg/kg ds	<=IW
Koper	20	19	mg/kg ds	<=IW
Kwik	0,07	0,07	mg/kg ds	<=IW
Lood	22	21	mg/kg ds	<= W
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IW
Nikkel	43			<=IW
5 VI 15 VI 16 VI	78	41	mg/kg ds	
Zink	10	75	mg/kg ds	<= W
DAK				
PAK	40.05	40.00		
Naftaleen	< 0,05	<0,03	mg/kg ds	
Fenanthreen	< 0,05	<0,03	mg/kg ds	
Anthraceen	< 0,05	<0,03	mg/kg ds	
Fluorantheen	< 0,05	<0,03	mg/kg ds	
Benzo(a)anthraceen	< 0,05	<0,03	mg/kg ds	
Chryseen	< 0,05	<0,03	mg/kg ds	
Benzo(k)fluorantheen	< 0,05	<0,03	mg/kg ds	
Benzo(a)pyreen	< 0,05	<0,03	mg/kg ds	
Benzo(g,h,i)peryleen	< 0,05	<0,03	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	< 0,05	<0,03	mg/kg ds	
PAK 10 VROM	0,35	<0,32	mg/kg ds	<=IW
			J. J	
PCB'S				
PCB 28	< 0.001	<0.001	mg/kg ds	
PCB 52	< 0,001	<0,001	mg/kg ds	
PCB 32 PCB 101	< 0,001	<0,001	mg/kg ds	
PCB 101	< 0,001	<0,001	mg/kg ds	
PCB 138	< 0,001	<0,001	mg/kg ds	
PCB 153	< 0,001	<0,001	mg/kg ds	
PCB 180	< 0,001	<0,001	mg/kg ds	
PCB (som 7)		<0,0045	mg/kg ds	<=IW
MINERALE OLIE Minerale olie C10 - C40	48	44	mg/kg ds	<=IW

Tabel 13: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	M13			
Certificaatcode	1743025			
Datum	21-5-2024			
Traject (cm-mv)	120-150			
Humus (% ds)	10,2			
Lutum (% ds)	18,4			
Datum van toetsing	3-6-2024			
Bodemklasse monster	0 0 2024			Voldoet aan
Dodernklasse monster				Interventiewaarde
Monstermelding 1				Interventiewaarde
Monstermelding 2				
Monstermelding 3				
Monstermeraling 5	Meetw	GSSD		T130
	Meetw	GSSD		1130
OVERIG				
	66.4	66.4	0/	CTA (5)
Droge stof	66,4	66,4	%	GTA ⁽⁵⁾
Lutum	18,4		%	
Organische stof (humus)	10,2		%	
Aard artefacten			-	
Gewicht artefacten			g	
ANORGANISCHE VERBINDINGEN				(5)
Cyanide (totaal)	< 3	<2	mg/kg ds	GTA (5)
Cyanide (vrij)	< 2	<1	mg/kg ds	<=IW
Cyanide (complex pH>=5)	< 1	1	mg/kg ds	<=IW
METALEN				
Barium	200	254	mg/kg ds	GTA (5)
Cadmium	0,88	0,93	mg/kg ds	<=IW
Kobalt	8,5	10,7	mg/kg ds	<=IW
Koper	54	60	mg/kg ds	<= W
Kwik	0,97	1,05	mg/kg ds	<= W
Lood	260	281	mg/kg ds	<=IW
Molybdeen	< 1,5	<1,1	mg/kg ds	<= W
Nikkel	28	35	mg/kg ds	<=IW
Zink	230	267	mg/kg ds	<=IW
ZIIIN	230	201	mg/kg us	~-IVV
PAK				
Naftaleen	< 0.05	<0.03	ma/ka da	
			mg/kg ds	
Fenanthreen	0,27	0,26	mg/kg ds	
Anthraceen	0,15	0,15	mg/kg ds	
Fluorantheen	0,85	0,83	mg/kg ds	
Benzo(a)anthraceen	0,45	0,44	mg/kg ds	
Chryseen	0,48	0,47	mg/kg ds	
Benzo(k)fluorantheen	0,31	0,30	mg/kg ds	
Benzo(a)pyreen	0,51	0,50	mg/kg ds	
Benzo(g,h,i)peryleen	0,31	0,30	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	0,31	0,30	mg/kg ds	
PAK 10 VROM	3,7	3,6	mg/kg ds	<=IW
PCB'S				
PCB 28	< 0.001	<0,001	mg/kg ds	
PCB 52	< 0,001	<0,001	mg/kg ds	
PCB 101	< 0,001	<0,001	mg/kg ds	
PCB 118	< 0,001	<0,001	mg/kg ds	
PCB 138	< 0,001	<0,001	mg/kg ds	
PCB 130 PCB 153	< 0,001	<0,001		
	< 0.001		mg/kg ds	
PCB 180	< 0,001	<0,001	mg/kg ds	- 1) 0 (
PCB (som 7)		<0,0048	mg/kg ds	<=IVV
		-		
MINERALE OLIE		1.5		
Minerale olie C10 - C40	44	43	mg/kg ds	<=IW

Tabel 14: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM14			
Certificaatcode	1743025			
Datum	21-5-2024			
Traject (cm-mv)	100-350			
Humus (% ds)	17,5			
Lutum (% ds)	26,8			
Datum van toetsing	3-6-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3				
	Meetw	GSSD		T130
OVERIG				
Droge stof	49.8	49,8	%	GTA ⁽⁵⁾
Lutum	26,8	.5,5	%	<u> </u>
Organische stof (humus)	17,5		%	
Aard artefacten	17,0		-	
Gewicht artefacten			g	
Comon antolacion			9	
METALEN				
Barium	240	227	mg/kg ds	GTA ⁽⁵⁾
Cadmium	0,45	0,37	mg/kg ds	<= W
Kobalt	8,2	7,8	mg/kg ds	<=IW
Koper	24	21	mg/kg ds	<=IW
Kwik	0,23	0,22	mg/kg ds	<= W
Lood	32	29	mg/kg ds	<= W
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IW
Nikkel	36	34	mg/kg ds	<= W
Zink	86	77	mg/kg ds	<=IW
PAK				
Naftaleen	< 0.05	<0.02	mg/kg ds	
Fenanthreen	< 0.05	<0,02	mg/kg ds	
Anthraceen	< 0,05	<0,02	mg/kg ds	
Fluorantheen	0,06	0,02	mg/kg ds	
Benzo(a)anthraceen	< 0,05	<0,03	mg/kg ds	
Chryseen	0,06	0,02	mg/kg ds	
Benzo(k)fluorantheen	< 0,05	<0,03	mg/kg ds	
Benzo(a)pyreen	< 0,05	<0,02	mg/kg ds	
Benzo(g,h,i)peryleen	< 0.05	<0.02	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	< 0,05	<0,02	mg/kg ds	
PAK 10 VROM	0,40	0,02	mg/kg ds	<=IW
174 TO VICOIVI	0,40	0,20	mg/kg us	2-14 A
PCB'S				
PCB 28	< 0,001	<0,000	mg/kg ds	
PCB 52	< 0,001	<0,000	mg/kg ds	
PCB 101	0,004	0,002	mg/kg ds	
PCB 118	0,001	0,001	mg/kg ds	
PCB 138	0,012	0,007	mg/kg ds	
PCB 153	0,011	0,006	mg/kg ds	
PCB 180	0,006	0,003	mg/kg ds	
PCB (som 7)		0,020	mg/kg ds	<= W
MINERALE OLIE				
MINERALE OLIE Minerale olie C10 - C40	160	01	ma/ka da	<= W
Millerale olle C 10 - C40	160	91	mg/kg ds	<-IVV

Tabel 15: Samenstelling en toetsing Beoordeling aan de interventiewaarde bodemkwaliteit (landbodem) (T.130)

monsternummer	MM15			
Certificaatcode	1743025			
Datum	21-5-2024			
Traject (cm-mv)	150-320			
Humus (% ds)	7,8			
Lutum (% ds)	22,8			
Datum van toetsing	3-6-2024			
Bodemklasse monster				Voldoet aan Interventiewaarde
Monstermelding 1				
Monstermelding 2				
Monstermelding 3		0000		7100
	Meetw	GSSD		T130
OVERIG				
Droge stof	63,3	63,3	%	GTA (5)
Lutum	22,8	,-	%	
Organische stof (humus)	7,8		%	
Aard artefacten	,,,		-	
Gewicht artefacten			g	
Comon antolacion			9	
METALEN				
Barium	130	140	mg/kg ds	GTA (5)
Cadmium	0,33	0,36	mg/kg ds	<= W
Kobalt	11	12	mg/kg ds	<=IVV
Koper	21	23	mg/kg ds	<=IW
Kwik	0,11	0,11	mg/kg ds	<=IW
Lood	24	25	mg/kg ds	<=IW
Molybdeen	< 1,5	<1,1	mg/kg ds	<=IW
Nikkel	37	39	mg/kg ds	<=IW
Zink	81	87	mg/kg ds	<=IW
PAK				
Naftaleen	< 0.05	<0.04	mg/kg ds	
Fenanthreen	< 0.05	<0.04	mg/kg ds	
Anthraceen	< 0,05	<0,04	mg/kg ds	
Fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)anthraceen	< 0.05	<0.04	mg/kg ds	
Chryseen	< 0,05	<0,04	mg/kg ds	
Benzo(k)fluorantheen	< 0,05	<0,04	mg/kg ds	
Benzo(a)pyreen	< 0,05	<0,04	mg/kg ds	
Benzo(g,h,i)peryleen	< 0.05	<0,04	mg/kg ds	
Indeno-(1,2,3-c,d)pyreen	< 0,05	<0,04	mg/kg ds	
PAK 10 VROM	0,35	<0,04	mg/kg ds	<=IW
	5,00	5,55		
PCB'S				
PCB 28	< 0,001	<0,001	mg/kg ds	
PCB 52	0,001	0,001	mg/kg ds	
PCB 101	0,003	0,004	mg/kg ds	
PCB 118	< 0,001	<0,001	mg/kg ds	
PCB 138	0,010	0,013	mg/kg ds	
PCB 153	0,009	0,012	mg/kg ds	
PCB 180	0,006	0,008	mg/kg ds	
PCB (som 7)		0,039	mg/kg ds	<= W
MINERALE OLIE				
MINERALE OLIE Minerale olie C10 - C40	< 35	<31	mg/kg ds	<= W
Willierale Olle C 10 - C40	\ 30	\31	ilig/kg us	\-1 VV

GTA

: Geen toetsnorm aanwezig : kleiner dan de detectielimiet : Kleiner of gelijk aan Interventiewaarde

: Groter dan Interventiewaarde : IW ontbreekt: zorgplicht van toepassing

: verhoogde rapportagegrens GSSD : Gestandaardiseerde meetwaarde

- Getoetst via de BoToVa service, versie 3.2.0 -

BIJLAGE 5.2

Toetsingstabellen grondwater

Tabel 1: Gemeten concentraties in grondwater met beoordeling conform de Wet Bodembescherming

Watermonster		11-1-1			24-1-1			31A-1-1		
Datum bemonstering		29-5-2024			29-5-2024			29-5-2024		
Filterdiepte (m -mv)		1,50 - 2,50			2,00 - 3,00			1,50 - 2,50		
Datum van toetsing		4-6-2024	Ot	1.	4-6-2024	Ot		4-6-2024	Ot f	at a
Monsterconclusie			ng Streefwaard			ng Streefwaard			ng Streefwaar	
		Meetw	GSSD	Index	Meetw	GSSD	Index	Meetw	GSSD	Index
ANORGANISCHE										
VERBINDINGEN										
Cyanide (totaal)	μg/l							<5	<4 ⁽⁶⁾	
Cyanide (vrij)	μg/l							<3	<2	-0
Cyanide (complex pH>=5)	μg/l							<3	2	-0,01
	10									
METALEN										
Barium	μg/l	320	320	0,47	210	210	0,28	150	150	0,17
Cadmium	μg/l	<0,2	<0,1	-0,05	<0,2	<0,1	-0,05	<0,2	<0,1	-0,05
Kobalt	μg/l	<2	<1	-0,23	14	14	-0,08	4,9	4,9	-0,19
Koper	μg/l	<2	<1	-0,23	5,0	5,0	-0,17	<2	<1	-0,23
Kwik	μg/l	<0,05	<0,04	-0,06	<0,05	<0,04	-0,06	<0,05	<0,04	-0,06
Lood	μg/l	<2	<1	-0,23	<2	<1	-0,23	<2	<1	-0,23
Molybdeen	μg/l	<2	<1	-0,01	3,7	3,7	-0	<2	<1	-0,01
Nikkel	μg/l	9,7	9,7	-0,09	23	23	0,13	5,0	5,0	-0,17
Zink	μg/l	25	25	-0,05	33	33	-0,04	<10	<7	-0,08
VLUCHTIGE AROMATISCHE										
KOOLWATERSTOFFEN		-0.0	-6.1		-0.0			20.0		-
Benzeen	μg/l	<0,2	<0,1	-0	<0,2	<0,1	-0	<0,2	<0,1	-0
Tolueen	μg/l	<0,2	<0,1	-0,01	<0,2	<0,1	-0,01	<0,2	<0,1	-0,01
Ethylbenzeen	μg/l	<0,2	<0,1	-0,03	<0,2	<0,1	-0,03	<0,2	<0,1	-0,03
ortho-Xyleen	μg/l	<0,1	<0,1		<0,1	<0,1		<0,1	<0,1	
meta-/para-Xyleen (som)	μg/l	<0,2	<0,1	0	<0,2	<0,1	0	<0,2	<0,1	0
Xylenen (som)	μg/l	0,2	<0,2 <0,1	0 03	0,2 <0,2	<0,2 <0,1	0 03	0,2	<0,2 <0,1	-0.02
Styreen (Vinylbenzeen) Som 16 Aromatische	µg/l	<0,2	<0,1 <0,77 ⁽²⁾	-0,02	<0,2	<0,1	-0,02	<0,2	<0,1 <0,77 ⁽²	
oplosmiddelen	µg/l		<0,77			<0,77			<0,77	
PAK										
Naftaleen	μg/l	<0,02	<0,01	0	<0,02	<0,01	0	<0,02	<0,01	0
PAK 10 VROM	-		<0,000	20 ⁽¹¹⁾		<0,0002	20 ⁽¹¹⁾		<0,000	20(11)
VOCL										
1,1-Dichloorethaan	μg/l	<0,2	<0,1	-0,01	<0,2	<0,1	-0,01	<0,2	<0,1	-0,01
1,2-Dichloorethaan	μg/l	<0,2	<0,1	-0,02	<0,2	<0,1	-0,02	<0,2	<0,1	-0,02
1,1-Dichlooretheen	μg/l	<0,1	<0,1	0,01	<0,1	<0,1	0,01	<0,1	<0,1	0,01
cis-1,2-Dichlooretheen	μg/l	<0,1	<0,1		<0,1	<0,1		<0,1	<0,1	
trans-1,2-Dichlooretheen	μg/l	<0,1	<0,1	0.04	<0,1	<0,1	0.04	<0,1	<0,1	0.04
cis + trans-1,2-	μg/l	0,1	<0,1	0,01	0,1	<0,1	0,01	0,1	<0,1	0,01
Dichlooretheen Dichloormethaan	μg/l	<0,2	<0,1	0	<0,2	<0,1	0	<0,2	<0,1	0
1,1-Dichloorpropaan	μg/l μg/l	<0,2	<0,1	U	<0,2	<0,1	U	<0,2	<0,1	U
1,2-Dichloorpropaan	μg/l	<0,2	<0,1		<0,2	<0,1		<0,2	<0,1	
1,3-Dichloorpropaan	μg/l	<0,2	<0,1		<0,2	<0,1		<0,2	<0,1	
Dichloorpropaan	μg/l	0,4	<0,1	-0	0,4	<0,1	-0	0,4	<0,1	-0
Tetrachlooretheen (Per)	μg/l	<0,1	<0,1	0	<0,1	<0,1	0	<0,1	<0,1	0
Tetrachloormethaan	μg/l	<0,1	<0,1	0,01	<0,1	<0,1	0,01	<0,1	<0,1	0,01
(Tetra)	-3.	-,.	٥, .	-,•.		٥, .	-,•.		٥, .	2,01
1,1,1-Trichloorethaan	μg/l	<0,1	<0,1	0	<0,1	<0,1	0	<0,1	<0,1	0
1,1,2-Trichloorethaan	μg/l	<0,1	<0,1	0	<0,1	<0,1	0	<0,1	<0,1	0
Trichlooretheen (Tri)	μg/l	<0,2	<0,1	-0,05	<0,2	<0,1	-0,05	<0,2	<0,1	-0,05
Trichloormethaan	μg/l	<0,2	<0,1	-0,01	<0,2	<0,1	-0,01	<0,2	<0,1	-0,01
(Chloroform)									55-95 PM	
Vinylchloride	μg/l	<0,2	<0,1	0,03	<0,2	<0,1	0,03	<0,2	<0,1	0,03
Tribroommethaan	μg/l	<0,2	<0,1 ⁽¹⁴⁾		<0,2	<0,1 ⁽¹⁴⁾		<0,2	<0,1 ⁽¹⁴⁾	0.
(bromoform)										
MINERALE OLIE								-		
	t .	1						T. Control of the Con		

Tabel 2: Gemeten concentraties in grondwater met beoordeling conform de Wet Bodembescherming

Watermonster		42-1-1			45-1-1		
Datum bemonstering		29-5-2024			29-5-2024		
Filterdiepte (m -mv)		1,50 - 2,50			1,50 - 2,50		
Datum van toetsing					4-6-2024		
Monsterconclusie					Overschrijdi	ng Streefwaard	le
Monstermelding 1					1		
Monstermelding 2							
Monstermelding 3							
		Meetw	GSSD	Index	Meetw	GSSD	Index
METALEN							
Barium	μg/l				210	210	0.28
Cadmium	μg/l				<0,2	<0,1	-0,05
Kobalt	μg/l				2,5	2,5	-0,03
Koper	μg/l				<2	<1	-0,22
Kwik					<0,05	<0,04	-0,23
Lood	µg/l				<2		-0,06
LACE TO BOOK (1)	μg/l					<1	
Molybdeen	μg/l				4,9	4,9	-0
Nikkel	μg/l				9,3	9,3	-0,09
Zink	µg/l				<10	<7	-0,08
VLUCHTIGE AROMATISCHE							
KOOLWATERSTOFFEN							
Benzeen	μg/l				<0,2	<0,1	-0
Tolueen	μg/l				<0,2	<0,1	-0,01
Ethylbenzeen	μg/l				<0,2	<0,1	-0,03
ortho-Xyleen	μg/l				<0,1	<0,1	-,00
meta-/para-Xyleen (som)	μg/l				<0,2	<0,1	
Xylenen (som)	μg/l	1 2			0,2	<0.2	0
Styreen (Vinylbenzeen)	μg/l				<0,2	<0,1	-0.02
Som 16 Aromatische	μg/l				10,2	<0,77 ^(2,7)	
oplosmiddelen	μ9/1					10,77	
DAK							
PAK					10.00	-0.04	^
Naftaleen	μg/l				<0,02	<0,01	0
PAK 10 VROM	-					<0,0002	20(11)
VOCL							
1.1-Dichloorethaan	μg/l				<0.2	<0.1	-0.01
1,2-Dichloorethaan	μg/l	-			<0,2	<0,1	-0,02
1,1-Dichlooretheen	μg/l				<0,1	<0,1	0,01
cis-1,2-Dichlooretheen	µg/l				<0,1	<0,1	0,01
trans-1,2-Dichlooretheen	μg/l				<0,1	<0,1	
cis + trans-1,2-	μg/l				0,1	<0,1	0,01
Dichlooretheen	pg/i				0,1	10,1	0,01
Dichloormethaan	μg/l				<0,2	<0,1	0
1,1-Dichloorpropaan	μg/l				<0,2	<0,1	
1,2-Dichloorpropaan	μg/l				<0,2	<0,1	
1,3-Dichloorpropaan	μg/l				<0,2	<0,1	
Dichloorpropaan	μg/l				0,4	<0,4	-0
Tetrachlooretheen (Per)	μg/l				<0,1	<0,1	0
Tetrachloormethaan	μg/l				<0,1	<0,1	0,01
(Tetra)						500 / 100 S	
1,1,1-Trichloorethaan	μg/l				<0,1	<0,1	0
1,1,2-Trichloorethaan	μg/l				<0,1	<0,1	0
Trichlooretheen (Tri)	μg/l				<0,2	<0,1	-0,05
Trichloormethaan	µg/l				<0,2	<0,1	-0,01
(Chloroform)	-						
Vinylchloride	μg/l				<0,2	<0,1	0,03
Tribroommethaan (bromoform)	µg/l				<0,2	<0,1 ⁽¹⁴⁾	
(DIOINOIOIII)							
MINERALE OLIE					.50		0.00
Minerale olie C10 - C40	μg/l				<50	<35	-0,03

GTA : Geen toetsnorm aanwezig : kleiner dan de detectielimiet

8,88 : <= Streefwaarde 8,88 : > Streefwaarde 8,88 11 14 : > Interventiewaarde

Enkele parameters ontbreken in de berekening van de somfractie Streefwaarde ontbreekt zorgplicht van toepassing

2 Enkele parameters ontbreken in de som

6 # : Heeft geen normwaarde : verhoogde rapportagegrens **GSSD** Gestandaardiseerde meetwaarde Index : (GSSD - S) / (I - S)

- Getoetst via de BoToVa service, versie 3.2.0 -

Tabel 3: Normwaarden conform de Wet Bodembescherming

		S	S Diep	Indicatief	1
ANORGANISCHE VERBINDINGEN					
Cyanide (vrij)	μg/l	5			1500
Cyanide (vrij) Cyanide (complex pH>=5)	μg/l	10			1500
Cyanide (complex pri>=3)	μg/i	10			1300
METALEN					
Barium	μg/l	50	200		625
Cadmium	μg/l	0,4	0,06		6
Kobalt	μg/l	20	0,7		100
Koper	μg/l	15	1,3		75
Kwik	μg/l	0,05	0,01		0,3
Lood	μg/l	15	1,7		75
Molybdeen	μg/l	5	3,6		300
Nikkel	μg/l	15	2,1		75
Zink	μg/l	65	24		800
VLUCHTIGE AROMATISCHE KOOLWATERSTOFFEN					
Benzeen	μg/l	0,2			30
Tolueen	μg/l	7			1000
Ethylbenzeen	μg/l	4			150
Xylenen (som)	μg/l	0,2			70
Styreen (Vinylbenzeen)	μg/l	6			300
Som 16 Aromatische oplosmiddelen	μg/l			150	
PAK					
Naftaleen	μg/l	0,01			70
VOCL					
1,1-Dichloorethaan	μg/l	7			900
1,2-Dichloorethaan	μg/l	7			400
1,1-Dichlooretheen	µg/l	0,01			10
cis + trans-1,2-Dichlooretheen	μg/l	0,01			20
Dichloormethaan	μg/l	0,01			1000
Dichloorpropaan	µg/l	0,8			80
Tetrachlooretheen (Per)	μg/l	0,01			40
Tetrachloormethaan (Tetra)	μg/l	0,01			10
1,1,1-Trichloorethaan	µg/l	0,01			300
1,1,2-Trichloorethaan	μg/l	0,01			130
Trichlooretheen (Tri)	μg/l	24			500
Trichloormethaan (Chloroform)	μg/l	6			400
Vinylchloride	μg/l	0,01			5
Tribroommethaan (bromoform)	μg/l				630
MINERALE OLIE					
Minerale olie C10 - C40	μg/l	50			600

BIJLAGE 5.3
Toetsingstabellen fundatiemateriaal samenstelling

Project A5631-Euromarkt Alphen aan den Rijn
Certificaten 1756352

Toetsing T.17 Beoordeling kwaliteit bouwstoffen (samenstelling)
Toets optie(s): Standaard (Samenstellingswaarde)
Toetsversie TerraIndex 2.2.0
Toetsdatum: 24 June 2024 14:41

Monsterreferentie	8300082						
Monsteromschrijving	FUND-M02 53	(15-50)					
Analyse	Eenheid	Analyseres.	Gestand.Res.	Toetsoordeel	EW	SW	
Droogrest							
droge stof	%	92.2	92.2	@			
Minerale olie							
minerale olie (florisil clean-up)	mg/kg ds	< 35	< 24	T<=SW		500	
Polycyclische koolwaterstoffer	1						
naftaleen	mg/kg ds	< 0.15	< 0.10	T<=SW		5	
fenantreen	mg/kg ds	< 0.15	< 0.10	T<=SW		20	
antraceen	mg/kg ds	< 0.15	< 0.10	T<=SW		10	
fluoranteen	mg/kg ds	< 0.15	< 0.10	T<=SW		35	
benzo(a)antraceen	mg/kg ds	< 0.15	< 0.10	T<=SW		40	
chryseen	mg/kg ds	< 0.15	< 0.10	T<=SW		10	
benzo(k)fluoranteen	mg/kg ds	< 0.15	< 0.10	T<=SW		40	
benzo(a)pyreen	mg/kg ds	< 0.15	< 0.10	T<=SW		10	
benzo(ghi)peryleen	mg/kg ds	< 0.15	< 0.10	T<=SW		40	
indeno(1,2,3-cd)pyreen	mg/kg ds	< 0.15	< 0.10	T<=SW		40	
Sommaties							
som PAK (10)	mg/kg ds	1	< 1.0	T<=SW		50	
Polychloorbifenylen							
PCB - 28	mg/kg ds	< 0.001	< 0.00070				
PCB - 52	mg/kg ds	< 0.001	< 0.00070				
PCB - 101	mg/kg ds	< 0.001	< 0.00070				
PCB - 118	mg/kg ds	< 0.001	< 0.00070				
PCB - 138	mg/kg ds	< 0.001	< 0.00070				
PCB - 153	mg/kg ds	< 0.001	< 0.00070				
PCB - 180	mg/kg ds	< 0.001	< 0.00070				
Sommaties							
som PCBs (7)	mg/kg ds	0.005	< 0.0049	T<=SW		0.5	
Toetsoordeel monster 830008	32:			Toepasbaar (<=	SW)		

Monsterreferentie	8300083								
Monsteromschrijving	FUND-MM01 4	5 (10-50) 46 (1	0-50) 47 (15-55)					
Analyse	Eenheid	Analyseres.	Gestand.Res.	Toetsoordeel	EW	SW			
Droogrest									
droge stof	%	92.2	92.2	@					
Minerale olie									
minerale olie (florisil clean-up)	mg/kg ds	260	260	T<=SW		500			
Polycyclische koolwaterstoffen									
naftaleen	mg/kg ds	< 0.15	< 0.10	T<=SW		5			
fenantreen	mg/kg ds	1.5	1.5	T<=SW		20			
antraceen	mg/kg ds	0.19	0.19	T<=SW		10			
fluoranteen	mg/kg ds	1.1	1.1	T<=SW		35			
benzo(a)antraceen	mg/kg ds	0.48	0.48	T<=SW		40			
chryseen	mg/kg ds	0.52	0.52	T<=SW		10			
benzo(k)fluoranteen	mg/kg ds	0.24	0.24	T<=SW		40			
benzo(a)pyreen	mg/kg ds	0.32	0.32	T<=SW		10			
benzo(ghi)peryleen	mg/kg ds	0.21	0.21	T<=SW		40			
indeno(1,2,3-cd)pyreen	mg/kg ds	0.21	0.21	T<=SW		40			
Sommaties	Sommaties								
som PAK (10)	mg/kg ds	4.9	4.9	T<=SW		50			

Pagina 2 van 2

Polychloorbifenylen			
PCB - 28	mg/kg ds	0.001	0.0010
PCB - 52	mg/kg ds	0.002	0.0020
PCB - 101	mg/kg ds	0.002	0.0020
PCB - 118	mg/kg ds	< 0.001	< 0.00070
PCB - 138	mg/kg ds	0.001	0.0010
PCB - 153	mg/kg ds	< 0.001	< 0.00070
PCB - 180	mg/kg ds	< 0.001	< 0.00070

Sommaties

som PCBs (7) mg/kg ds 0.008 **0.0081** T<=SW 0.5

Toetsoordeel monster 8300083:

Toepasbaar (<=SW)

Legenda

@ Geen toetsoordeel mogelijk

T<=SW Toepasbaar (<= Samenstellingswaarde)

BIJLAGE 5.4
Toetsingstabellen fundatiemateriaal uitloging

Certificaten 1756352

sulfaat

Toetsing T.16 Beoordeling kwaliteit bouwstoffen (emissie) Toets optie(s): Niet-vormgegeven -zonder IBC
Toetsversie TerraIndex 2.2.0 Toetsdatum: 24 June 2024 14:40

Monsterreferentie	8300082						
Monsteromschrijving	FUND-M02 53	(15-50)					
Analyse	Eenheid	Analyseres.	Gestand.Res.	Toetsoordeel	EW	SW	
Metalen - uitloog onderzoek							
antimoon (Sb)	mg/kg ds	< 0.009	< 0.0063	T<=EW	0.32		
arseen (As)	mg/kg ds	< 0.2	< 0.14	T<=EW	0.9		
barium (Ba)	mg/kg ds	0.64	0.64	T<=EW	22		
cadmium (Cd)	mg/kg ds	< 0.007	< 0.0049	T<=EW	0.04		
chroom (Cr)	mg/kg ds	< 0.1	< 0.07	T<=EW	0.63		
kobalt (Co)	mg/kg ds	< 0.07	< 0.049	T<=EW	0.54		
koper (Cu)	mg/kg ds	< 0.1	< 0.07	T<=EW	0.9		
kwik (Hg) FIAS/Fims	mg/kg ds	< 0.005	< 0.0035	T<=EW	0.02		
lood (Pb)	mg/kg ds	< 0.3	< 0.21	T<=EW	2.3		
molybdeen (Mo)	mg/kg ds	0.097	0.097	T <= EW	1		
nikkel (Ni)	mg/kg ds	< 0.2	< 0.14	T<=EW	0.44		
seleen (Se)	mg/kg ds	0.0091	0.0091	T <= EW	0.15		
tin (Sn)	mg/kg ds	< 0.02	< 0.014	T<=EW	0.4		
vanadium (V)	mg/kg ds	< 0.3	< 0.21	T<=EW	1.8		
zink (Zn)	mg/kg ds	< 0.7	< 0.49	T<=EW	4.5		
Uitloogonderzoek							
bromide	mg/kg ds	< 0.8	< 0.56	T <= EW	20		
chloride	mg/kg ds	180	180	T <= EW	616		
fluoride	mg/kg ds	37	37	T<=EW	55		

460

T<=EW

2430

Toetsoordeel monster 8300082: Toepasbaar (<= EW)

460

mg/kg ds

Monsterreferentie	8300083						
Monsteromschrijving	FUND-MM01 4	5 (10-50) 46 (1	.0-50) 47 (15-55)			
Analyse	Eenheid	Analyseres.	Gestand.Res.	Toetsoordeel	EW	SW	
Metalen - uitloog onderzoek							
antimoon (Sb)	mg/kg ds	< 0.009	< 0.0063	T<=EW	0.32		
arseen (As)	mg/kg ds	< 0.2	< 0.14	T<=EW	0.9		
barium (Ba)	mg/kg ds	< 0.6	< 0.42	T <= EW	22		
cadmium (Cd)	mg/kg ds	< 0.007	< 0.0049	T<=EW	0.04		
chroom (Cr)	mg/kg ds	< 0.1	< 0.07	T<=EW	0.63		
kobalt (Co)	mg/kg ds	< 0.07	< 0.049	T<=EW	0.54		
koper (Cu)	mg/kg ds	< 0.1	< 0.07	T<=EW	0.9		
kwik (Hg) FIAS/Fims	mg/kg ds	< 0.005	< 0.0035	T<=EW	0.02		
lood (Pb)	mg/kg ds	< 0.3	< 0.21	T<=EW	2.3		
molybdeen (Mo)	mg/kg ds	< 0.05	< 0.035	T<=EW	1		
nikkel (Ni)	mg/kg ds	< 0.2	< 0.14	T <= EW	0.44		
seleen (Se)	mg/kg ds	< 0.009	< 0.0063	T<=EW	0.15		
tin (Sn)	mg/kg ds	< 0.02	< 0.014	T<=EW	0.4		
vanadium (V)	mg/kg ds	< 0.3	< 0.21	T < = EW	1.8		
zink (Zn)	mg/kg ds	< 0.7	< 0.49	T<=EW	4.5		
Uitloogonderzoek							
bromide	mg/kg ds	< 0.8	< 0.56	T<=EW	20		
chloride	mg/kg ds	< 100	< 70	T <= EW	616		
fluoride	mg/kg ds	3.8	3.8	T<=EW	55		
sulfaat	mg/kg ds	360	360	T<=EW	2430		
Toetsoordeel monster 830008	33:		-	Toepasbaar (<=	= EW)		

Monsterreferentie	Som 8300082 + 8300083									
Monsteromschrijving	FUND-M02 53 (15-50) + FUND-MM01 45 (10-50) 46 (10-50) 47 (15-55)									
Analyse	Eenheid	Analyseres.	Gestand.Res.	Toetsoordeel	EW	SW				

Pagina 2 van 2

Metalen - uitloog onderzoek	C				
antimoon (Sb)	mg/kg ds	< 0.0063	< 0.0063	T<=EW	0.32
arseen (As)	mg/kg ds	< 0.14	< 0.14	T <= EW	0.9
barium (Ba)	mg/kg ds	0.53	0.53	T<=EW	22
cadmium (Cd)	mg/kg ds	< 0.0049	< 0.0049	T<=EW	0.04
chroom (Cr)	mg/kg ds	< 0.07	< 0.07	T<=EW	0.63
kobalt (Co)	mg/kg ds	< 0.049	< 0.049	T<=EW	0.54
koper (Cu)	mg/kg ds	< 0.07	< 0.07	T<=EW	0.9
kwik (Hg) FIAS/Fims	mg/kg ds	< 0.0035	< 0.0035	T<=EW	0.02
lood (Pb)	mg/kg ds	< 0.21	< 0.21	T<=EW	2.3
molybdeen (Mo)	mg/kg ds	0.066	0.066	T<=EW	1
nikkel (Ni)	mg/kg ds	< 0.14	< 0.14	T<=EW	0.44
seleen (Se)	mg/kg ds	0.0077	0.0077	T<=EW	0.15
tin (Sn)	mg/kg ds	< 0.014	< 0.014	T<=EW	0.4
vanadium (V)	mg/kg ds	< 0.21	< 0.21	T<=EW	1.8
zink (Zn)	mg/kg ds	< 0.49	< 0.49	T <= EW	4.5
Uitloogonderzoek					
bromide	mg/kg ds	< 0.56	< 0.56	T<=EW	20
chloride	mg/kg ds	120	120	T<=EW	616
fluoride	mg/kg ds	20	20	T<=EW	55
sulfaat	mg/kg ds	410	410	T<=EW	2430

Toetsoordeel monster Som 8300082 + 8300083: Toepasbaar (<= EW)

Legenda

T<=EW Toepasbaar (<= Emissiewaarde)